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PROBLEM 1: CONTINUOUS-TIME SYSTEM PROPERTIES.  20 points. 

Signal Processing First, problem P-9.2, page 279. 

In each of the following cases, state whether or not the continuous time system is (i) linear, (ii) time-

invariant, (iii) stable, and (iv) causal. In each case, x(t) he represents the input and y(t) represents 

the corresponding output of the system. Provide a brief justification, either in the form of 

mathematical equations or statements in the form of complete, crack, push sentences. Remember, 

in order to show the system does not have the property, all you have to do is give an example and 

put up with is not satisfy the condition of the property. 

(a) An exponential system: 𝑦(𝑡) = 𝑒𝑥(𝑡+2).  Used in speech denoising and machine learning. 

(b) A phase modulator: 𝑦(𝑡) = cos(𝜔𝑐𝑡 + 𝑥(𝑡)). Phase modulation is used for low-power 

transmission in IoT systems. The digital version, Phase Shift Keying, is used in RFID and 

Bluetooth and higher transmit power systems, such as Wi-Fi and cellular communications. 

(c) An amplitude modulator: 𝑦(𝑡) = (𝐴 + 𝑥(𝑡)) cos(𝜔𝑐𝑡). Used in AM radio. Amplitude 

modulation (without the offset of A) is used in Wi-Fi, cellular and cable modems. 

(d) Take the even part of the input signal: 𝑦(𝑡) =
𝑥(𝑡)+𝑥(−𝑡)

2
. Primarily for theoretical analysis. 

Solution: Linearity 

When checking each system for linearity, we can use the quick test of input signal of 0 for 

all time, which is a by-product of the homogeneity property when the input signal is scaled 

by a = 0. If the output signal is not zero for all time, then the system is not linear. If the 

output is zero for all time, then we'll have to apply the mathematical definitions for 

homogeneity and additivity. 

(a) 𝒚(𝒕) = 𝒆𝒙(𝒕+𝟐) = 𝒆𝟎 = 𝟏.  Fails all-zero input test.  Not linear. 

(b) 𝒚(𝒕) = 𝐜𝐨𝐬(𝝎𝒄𝒕 + 𝒙(𝒕)) = 𝐜𝐨𝐬(𝝎𝒄𝒕).  Fails all-zero input test.  Not linear. 

(c) 𝒚(𝒕) = (𝑨 + 𝒙(𝒕)) 𝐜𝐨𝐬(𝝎𝒄𝒕) = 𝑨 𝐜𝐨𝐬(𝝎𝒄𝒕). Fails all-zero input test.  Not linear. 

(d) 𝒚(𝒕) =
𝒙(𝒕)+𝒙(−𝒕)

𝟐
= 𝟎.  Passes all-zero input test.  Check for homogeneity and additivity. 

• Homogeneity. Input 𝒂 𝒙(𝒕).  Output 𝒚𝒔𝒄𝒂𝒍𝒆𝒅(𝒕) =
(𝒂 𝒙(𝒕))+(𝒂 𝒙(−𝒕))

𝟐
= 𝒂 

𝒙(𝒕)+𝒙(−𝒕)

𝟐
= 𝒂 𝒚(𝒕) 

• Additivity. Input 𝒙𝟏(𝒕) + 𝒙𝟐(𝒕). Output 

 𝒚𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆(𝒕) =
(𝒙𝟏(𝒕)+𝒙𝟐(𝒕))+(𝒙𝟏(−𝒕)+𝒙𝟐(−𝒕))

𝟐
=

𝒙𝟏(𝒕)+𝒙𝟏(−𝒕)

𝟐
+

𝒙𝟐(𝒕)+𝒙𝟐(−𝒕)

𝟐
= 𝒚𝟏(𝒕) + 𝒚𝟐(𝒕) 

Yes, system (d) is linear. 

Solution: Time-Invariance 

For time-invariant system, shift of the input signal by any real-valued t causes the same 

shift in output signal, i.e. x(t - t) means y(t - t) for all t. 

https://en.wikipedia.org/wiki/Phase_modulation
https://en.wikipedia.org/wiki/Phase-shift_keying
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(a) 𝒚(𝒕) = 𝒆𝒙(𝒕+𝟐).  Input 𝒙(𝒕 − 𝝉). Output 𝒚𝒔𝒉𝒊𝒇𝒕𝒆𝒅(𝒕) = 𝒆𝒙((𝒕−𝝉)+𝟐) = 𝒆𝒙(𝒕−𝝉+𝟐) = 𝒚(𝒕 − 𝝉).  

Time-invariant. 

(b) 𝒚(𝒕) = 𝐜𝐨𝐬(𝝎𝒄𝒕 + 𝒙(𝒕)).  The signal 𝐜𝐨𝐬(𝝎𝒄𝒕) is part of the system and does not shift in 

time when the input shifts in time.  Time-varying. 

(c) 𝒚(𝒕) = (𝑨 + 𝒙(𝒕)) 𝐜𝐨𝐬(𝝎𝒄𝒕).  The signal 𝐜𝐨𝐬(𝝎𝒄𝒕) is part of the system and does not 

shift in time when the input shifts in time.  Time-varying. 

(d) 𝒚(𝒕) =
𝒙(𝒕)+𝒙(−𝒕)

𝟐
.  The copy of the input signal shifts in the same way that the input 

signal shifts.  The copy that is reversed in time gives the negated shift.  Time-varying. 

Solution: Stability 

A stable system will always produce a bounded amplitude output signal when given a 

bounded amplitude input signal.  Let |𝒙(𝒕)| < 𝑩 < ∞ 

(a) |𝒚(𝒕)| = |𝒆𝒙(𝒕+𝟐)| ≤ |𝒆𝑩|.  Bounded output.  Stable. 

(b) 𝒚(𝒕) = 𝐜𝐨𝐬(𝝎𝒄𝒕 + 𝒙(𝒕)).  Output will always be in range [-1, 1] regardless of the value 

of 𝒙(𝒕). Bounded output.  Stable. 

(c) |𝒚(𝒕)| = |(𝑨 + 𝒙(𝒕)) 𝐜𝐨𝐬(𝝎𝒄𝒕)| ≤ |𝑨 + 𝒙(𝒕)| |𝐜𝐨𝐬(𝝎𝒄𝒕)| ≤ |𝑨 + 𝒙(𝒕)| ≤ |𝑨| + |𝒙(𝒕)| ≤ |𝑨| + 𝑩. 

Bounded output.  Stable. 

(d) |𝒚(𝒕)| = |
𝒙(𝒕)+𝒙(−𝒕)

𝟐
| ≤

|𝒙(𝒕)|

𝟐
+

|𝒙(−𝒕)|

𝟐
≤ 𝑩.  Bounded output.  Stable. 

Solution: Causality 

A causal system depends only on current and previous input values and/or previous output 

value to compute an output value. 

(a) 𝒚(𝒕) = 𝒆𝒙(𝒕+𝟐).  Depends on input 2 seconds in the future.  Not Causal. 

(b) 𝒚(𝒕) = 𝐜𝐨𝐬(𝝎𝒄𝒕 + 𝒙(𝒕)).  Only depends on the current input value 𝒙(𝒕).  Causal. 

(c) 𝒚(𝒕) = (𝑨 + 𝒙(𝒕)) 𝐜𝐨𝐬(𝝎𝒄𝒕).  Only depends on the current input value 𝒙(𝒕).  Causal. 

(d) 𝒚(𝒕) =
𝒙(𝒕)+𝒙(−𝒕)

𝟐
 .  Check specific values of time t. 

• When t = 0, y(0) = ( x(0) + x(0) ) / 2 = x(0). Causal. 

• When t = 2, y(2) = ( x(2) + x(-2) ) / 2. Causal. 

• When t = -2, y(-2) = ( x(-2) + x(2) ) / 2. Depends on future input x(2).  Not Causal. 

 

 

PROBLEM 2: CONTINUOUS-TIME AVERAGING FILTERS. 32 points. 

For a continuous-time LTI system with input signal 𝑥(𝑡) and impulse response ℎ(𝑡), the output 

signal 𝑦(𝑡) is the convolution of ℎ(𝑡) and 𝑥(𝑡): 

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡) = ∫ ℎ(𝜆) 𝑥(𝑡 − 𝜆) 𝑑𝜆

∞

−∞
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(a) Compute the output 𝑦(𝑡) when the input 𝑥(𝑡) is a rectangular pulse of amplitude 1 for 𝑡 ∈
[0, 𝑇𝑥] and amplitude 0 otherwise and 𝑥[𝑛] is filtered by an LTI unnormalized averaging 

filter whose impulse response ℎ(𝑡) is a rectangular pulse of amplitude 1 for 𝑡 ∈ [0, 𝑇ℎ] and 

amplitude 0 otherwise.  Assume 𝑇𝑥 ≠ 𝑇ℎ. 

i. Write an equation relating output 𝑦(𝑡) and input 𝑥(𝑡).  4 points 

Solution: With 𝒉(𝒕) = 𝟏 for 𝒕 ∈ [𝟎, 𝑻𝒉], 

𝒚(𝒕) = 𝒉(𝒕) ∗ 𝒙(𝒕) = ∫ 𝒉(𝝀) 𝒙(𝒕 − 𝝀) 𝒅𝝀

∞

−∞

= ∫ 𝒙(𝒕 − 𝝀) 𝒅𝝀

𝑻𝒉

𝟎

 

We can apply the change of variables 𝒖 = 𝒕 − 𝝀.  𝒅𝒖 = −𝒅𝝀.  As 𝝀 → 𝟎, 𝒖 → 𝒕.  As 

𝝀 → 𝑻𝒉, 𝒖 → 𝒕 − 𝑻𝒉.  This gives 

𝒚(𝒕) = ∫ 𝒙(𝒕 − 𝝀) 𝒅𝝀 = ∫ 𝒙(𝒖) 𝒅𝒖

𝒕

𝒕−𝑻𝒉

𝑻𝒉

𝟎

 

The averaging filter integrates the input signal over the previous 𝑻𝒉 seconds. 

Although not asked, this filter is stable unlike the integrator over all time in part (b). 

ii. What is(are) the initial condition(s) and what value should it(they) be set to?  3 points 

Solution: The initial conditions are the memory of the previous 𝑻𝒉 seconds of the 

input signal.  This memory (signal buffer) would have to be initially zeroed out. 

iii. Develop a formula for 𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡) using the convolution definition in terms of 

𝑇𝑥 and 𝑇ℎ.  Show the intermediate steps in computing the convolution.  6 points 

Solution: Trapezoid of duration 𝑻𝒚 = 𝑻𝒉 + 𝑻𝒙.  Let 𝑻𝒎𝒊𝒏 = 𝐦𝐢𝐧(𝑻𝒉, 𝑻𝒙) and 𝑻𝒎𝒂𝒙 =

𝐦𝐚𝐱(𝑻𝒉, 𝑻𝒙).  As we flip and slide one rectangular pulse against the other, partial 

overlap occurs from 0 to 𝑻𝒎𝒊𝒏 seconds, complete overlap from 𝑻𝒎𝒊𝒏 to 𝑻𝒎𝒂𝒙 

seconds, and partial overlap from 𝑻𝒎𝒂𝒙 to 𝑻𝒚 seconds. 

𝒚(𝒕) =

[
 
 
 
 

𝟎 𝐟𝐨𝐫 𝒕 < 𝟎
𝒕 𝐟𝐨𝐫 𝟎 ≤ 𝒕 < 𝑻𝒎𝒊𝒏

       𝑻𝒎𝒊𝒏     𝐟𝐨𝐫 𝑻𝒎𝒊𝒏 ≤ 𝒕 < 𝑻𝒎𝒂𝒙

𝑻𝒚 − 𝒕 𝐟𝐨𝐫 𝑻𝒎𝒂𝒙 ≤ 𝒕 < 𝑻𝒚

𝟎 𝐟𝐨𝐫 𝒕 > 𝑻𝒚 

 

The details of the flip-and-slide are analogous to problem 1(a)iii for the discrete-

time convolution of two rectangular pulses, and explained next. 

We will hold 𝒉(𝒕) in place and flip and slide 𝒙(𝒕)about 𝒉(𝒕): 
 

 

 

 

There are five cases 

to consider: 

1. No overlap.  𝒕 < 𝟎.  Amplitude is 0. 

2. Partial overlap.  𝟎 ≤ 𝒕 < 𝑻𝒎𝒊𝒏.  Amplitude is 𝒕. 

Initial overlap at the origin, and integration of a point is zero.  Each shift by a 

time unit adds that much to the area. 
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𝒚(𝒕) = ∫ 𝒉(𝝀) 𝒙(𝒕 − 𝝀) 𝒅𝝀 =

∞

−∞

∫  𝒅𝝀

𝐭

𝟎

= 𝒕 

3. Complete overlap.  𝑻𝒎𝒊𝒏 ≤ 𝒕 < 𝑻𝒎𝒂𝒙.  Amplitude is 𝑻𝒎𝒊𝒏.   

Here, 𝑻𝒎𝒊𝒏 seconds overlap, and each amplitude has a value of one. 

4. Partial overlap. 𝑻𝒎𝒂𝒙 ≤ 𝒏 < 𝑻𝒚.  Amplitude is 𝑻𝒚 − 𝒕.   

Amplitude reduces by the same amount that t is shifted. 

𝒚(𝒕) = ∫ 𝒉(𝝀) 𝒙(𝒕 − 𝝀) 𝒅𝝀 =

∞

−∞

∫  𝒅𝝀

𝑻𝒉

𝒕−𝑻𝒙

= 𝑻𝒉 − (𝒕 − 𝑻𝒙) = 𝑻𝒚 − 𝒕 

5. No overlap.  𝒕 ≥ 𝑻𝒚.  Amplitude is 0. 

 

iv. Validate the formula for 𝑦(𝑡) to compute the convolution for 𝑇𝑥 = 9 seconds and 𝑇ℎ =
4 seconds.   3 points. 

Solution:  Trapezoid of duration 𝑻𝒚 = 𝟒 + 𝟗 = 𝟏𝟑 seconds.  Let 𝑻𝒎𝒊𝒏 = 𝐦𝐢𝐧(𝟒, 𝟗) =

𝟒 seconds and 𝑻𝒎𝒂𝒙 = 𝐦𝐚𝐱(𝟒, 𝟗) = 𝟗 seconds.  As we flip and slide one rectangular 

pulse against the other, partial overlap occurs from 0 to 𝑻𝒎𝒊𝒏 seconds, complete 

overlap from 𝑻𝒎𝒊𝒏 to 𝑻𝒎𝒂𝒙 seconds, and partial overlap from 𝑻𝒎𝒂𝒙 to 𝑻𝒚 seconds. 

𝒚(𝒕) =

[
 
 
 
 

𝟎 𝐟𝐨𝐫 𝒕 < 𝟎
𝒕 𝐟𝐨𝐫 𝟎 ≤ 𝒕 < 𝟒

     𝟒     𝐟𝐨𝐫 𝟒 ≤ 𝒕 < 𝟗
𝟏𝟑 − 𝒕 𝐟𝐨𝐫 𝟗 ≤ 𝒕 < 𝟏𝟑

𝟎 𝐟𝐨𝐫 𝒕 >  𝟏𝟑

 

Using the cconvdemo from Signal Processing First, 
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(b) When an input signal has an average value of zero, i.e. the DC component is zero, an LTI 

integrator can be used as an averaging filter. The differential equation governing the input-

output relationship is 

𝑦(𝑡) = ∫𝑥(𝜏) 𝑑𝜏   for 𝑡 ≥ 0

𝑡

0−

 

The integrator was operating before t = 0 seconds, but we weren't able to observe that. 

We are observing the system starting at t = 0 seconds. 

Since we are starting the integration at t = 0 seconds, there is ambiguity as to whether 

Dirac delta signal would be included at time 0. We can use 0- as the lower limit to 

indicate that integration starts at time 0 before the impulse occurs. 

 

i. What is(are) the initial condition(s) and what value should it(they) be set to?  3 points 

Solution: The initial condition is the initial integration value y(0).  It should be set to 

zero as a necessary condition for LTI properties to hold. 

ii. What is the impulse response?  3 points 

Solution: For input 𝒙(𝒕) = 𝜹(𝒕), the output is the impulse response 

𝒉(𝒕) = ∫𝜹(𝝉) 𝒅𝝉 = 𝒖(𝒕)

𝒕

𝟎−

 

iii. Develop a formula for 𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡) using the convolution definition when the input 

signal is 𝑥(𝑡) = 𝑢(𝑡).  Note that 𝑥(𝑡) has bounded amplitude.  9 points 

Solution: Using the convolution definition, 

𝒚(𝒕) = 𝒉(𝒕) ∗ 𝒙(𝒕) = 𝒖(𝒕) ∗ 𝒖(𝒕) = ∫ 𝒖(𝝀) 𝒖(𝒕 − 𝝀) 𝒅𝝀

∞

−∞

 

𝒖(𝝀) is 1 for 𝝀 ≥ 𝟎 and 0 otherwise, whereas 𝒖(𝒕 − 𝝀) is 1 for 𝒕 − 𝝀 ≥ 𝟎 or 𝝀 ≤ 𝒕.  

Also, note that 𝒕 ≥ 𝟎 because 𝝀 ≥ 𝟎: 

𝒚(𝒕) = ∫  𝒅𝝀 = 𝒕 𝒖(𝒕)

𝒕

𝟎

 

iv. Is the LTI integrator bounded-input bounded-output (BIBO) stable?  Your work in part iii 

might be helpful.  3 points 

Solution:  For input signal 𝒙(𝒕) = 𝒖(𝒕), whose amplitude is bounded in [0, 1], the 

output 𝒚(𝒕) = 𝒕 𝒖(𝒕) grows without bound as 𝒕 →  ∞.  LTI integrator is not stable. 

 

 

PROBLEM 3: CONTINUOUS TIME-FREQUENCY RESPONSE.  48 points. 

Signal Processing First, problem P-10.9, page 305.  In addition, for each of the seven filters given, 

describe the frequency selectivity in the magnitude response as lowpass, highpass, bandpass, 

bandstop, allpass, or notch. 
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Consider an LTI system whose frequency response 

𝐻(𝑗𝜔) is unknown.  The system has a periodic input 

whose spectrum is shown in Fig. P-10.9. 

For each part of this problem, the output of the system 

is given and the frequency response must be 

determined by selecting from the list numbered 1-7 

below.  Chose the frequency response 𝐻(𝑗𝜔) of the 

system that could have produced the specific output 

when the input is the signal with the spectrum in Fig. P-10.9.  

Solution: Fig. P-10.9 plots the following Fourier series coefficients 

1
, 0

2

1
, 1

0, 2

1
, 3

3

0, 4

1
, 5

5

k

k

k

k
a

k

k

k








=


 = 



= 
= 
− = 

 = 



= 


 

which can be used in the Fourier series formula 

0

5

0 0 0

5

1 2 2 2
( ) cos( ) cos(3 ) cos(5 )

2 3 5

jk t

k

k

x t a e t t t
   

  =−

= = + − +  

Due to the system having linear and time-invariant properties, all the frequency components in the 

output signal had to be present in the input signal.  That is, a linear time-invariant (LTI) system 

cannot create new frequencies. 

Using LTI system properties, the output signal is simply the sum of the system’s response to each 

frequency component of the input signal: 

y(t) =
1

2
H( j0)+

2

p
cos(w

0
t)H( jw

0
)-

2

3p
cos(3w

0
t)H ( j3w

0
)+

2

5p
cos(5w

0
t)H ( j5w

0
)
 

We can write the frequency response into polar form as 𝐻(𝑗𝜔) = |𝐻(𝑗𝜔)|𝑒𝑗 ∠𝐻(𝑗𝜔): 

y(t) =
1

2
H ( j0) +

2

p
|H ( jw

0
) | cos(w

0
t +ÐH ( jw

0
)) -

        
2

3p
|H ( j3w

0
) | cos(3w

0
t +ÐH ( j3w

0
)) +

        
2

5p
|H ( j5w

0
) | cos(5w

0
t +ÐH ( j5w

0
))

 

Please see lecture slide 14-6 and Signal Processing First Section 10-2. 
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a) 
1

( )
2

y t =  

The output of system can be obtained by the following formula 

0

5

0

5

( ) ( )
k

jk t

k

k

y t H jk a e


=

=−

=   

Hence, we can find the value of 𝐻(𝑗𝜔) for frequencies that are present in the input. 

0

1, 0
( )

0, 1, 3, 5

k
H jk

k


=
= 

=   
 

Filter 5 has similar response, so the input has passed through this lowpass filter. 

𝐻(𝑗𝜔) = [
1 |𝜔| ≤

1

2
𝜔0

0 |𝜔| >
1

2
𝜔0

 

b)  0

1 2 1
( ) cos

2 2
y t t



  
= + −  

  
 

0

5

0 0

5

1 2 1
( ) ( ) cos

2 2

k
jk t

k

k

y t H jk a e t
 



=

=−

  
= = + −  

  
  

( ) 0 /2

0

1, 0

, 1

0, 3, 5

j

k

H jk e k

k

 −

=


= = 
 =  

 

Filter 6 has this property and will give similar output. This lowpass filter removes frequencies 

above 
3𝜔0

2
  and delays the input by ½ sample.  We can obtain the delay by computing the group 

delay for the filter as follows:  Group Delay(𝜔) = −
𝑑

𝑑𝜔
∠𝐻(𝑗𝜔) = −

𝑑

𝑑𝜔
(−

𝜔

2
) =

1

2
 . 

𝐻(𝑗𝜔) = [
𝑒−𝑗

𝜔
2 |𝜔| ≤

3

2
𝜔0

0 |𝜔| >
3

2
𝜔0

 

 

c)   

( )0

2
( ) cosy t t


=  

( )0

5

0 0

5

2
( ) ( ) cos

k
jk t

k

k

y t H jk a e t
 



=

=−

= =  

( )0

1, 1

0, 0, 3, 5

k
H jk

k


= 
= 

=  
 

The original signal has passed through a bandpass filter which removes all frequencies present in 

the input signal except 𝜔0. Filter 7 shows a bandpass filter with this property. 
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0 0

0 0

1 3
1,

2 2
( )

1 3
0,

2 2

H j

or

  



   


 

= 
  


 

 

d)   

0 0 0

1 2 2 2
( ) ( ) cos( ) cos(3 ) cos(5 )

2 3 5
y t x t t t t  

  
= − = − +  

0

5

0 0 0 0

5

2 2 2
( ) ( ) cos( ) cos(3 ) cos(5 )

3 5

k
jk t

k

k

y t H jk a e t t t
   

  

=

=−

= = − +  

( )0

0, 0

1, 1, 3, 5

k
H jk

k


=
= 

=   
 

This filter passes all frequencies except 𝜔 = 0,  therefore it acts as a highpass filter or a bandpass 

filter. Filter 1 is a highpass filter that can produce this output. 

𝐻(𝑗𝜔) = [
0 |𝜔| ≤

1

2
𝜔0

1 |𝜔| >
1

2
𝜔0

 

e)   

1
( ) ( )

2
y t x t= −  

0

5

0

5

( ) ( )
k

jk t

k

k

y t H jk a e


=

=−

=   

( ) 0 /2

0

jk
H jk e

 −
=  

Filter 2 gives this response, which is allpass. 

/2( ) jH j e  −=  

Filters 3 and 4 cannot produce any of the output 

signals. 

Filter 3: 

 0

1
( ) 1 cos( )

2
H j T = +  

   0 0 0 0

1 1
( ) 1 cos( ) 1 cos(2 ) 1

2 2
for k H jk k T k    = → = + = + =  

For 𝜔 = 𝑘𝜔0, this filter passes all the harmonic frequencies; however, it rejects sub-harmonic 

frequencies at 𝜔 =
𝑘𝜔0

2
. This filter has a periodic magnitude response as shown above. 

Filter 4: This filter removes frequencies above 
3𝜔0

2
  and is a lowpass filter. 

Epilogue:  The LTI ideal delay is a building block in continuous-time systems.   
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An LTI system with a constant non-zero magnitude response such as |𝐻(𝑗𝜔)| = 1 passes all 

frequencies through equally well.  This is called an allpass filter. 

From the phase response, we can determine the group delay in seconds through the LTI system 

for a particular frequency by taking the derivative of the phase response and negating it.  For a 

phase response of ∠𝐻(𝑗𝜔) = −
𝜔

2
, the group delay would be 

1

2
 seconds, which is the delay in the 

ideal delay system.  See also problem 8.2(b) below. 

If we could only observe the ideal delay for time 𝑡 ≥ 0, then we would have to set the initial 

conditions to zero as a necessary condition for the ideal delay to be LTI.  Please see Handout U 

Property of Time-Invariance (Shift-Invariance) for a System Under Observation for an example 

of an ideal delay under observation for time 𝑡 ≥ 0. 

http://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20U%20Time%20Invariance%20Under%20Observations.pdf
http://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20U%20Time%20Invariance%20Under%20Observations.pdf

