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• The exam is scheduled to last three hours. 
• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets. 
• Calculators are allowed. 
• You may use any standalone computer system, i.e. one that is not connected to a network.  
• Please disable all wireless connections on your calculator(s) and computer system(s). 
• Please turn off all cell phones. 
• No headphones are allowed. 
• All work should be performed on the midterm exam.  If more space is needed, then use 

the backs of the pages. 
• Fully justify your answers.  If you decide to quote text from a source, please give the 

quote, page number and source citation. 
 
 

Problem Point Value Your score Topic 
1 10  Continuous-Time Fourier Series 
2 12  Discrete-Time Convolution 
3 9  Discrete-Time Convolution II 
4 12  Continuous-Time Convolution  
5 12  Discrete-Time FIR Filter Design 
6 12  Discrete-Time IIR Filter Design 
7 12  Continuous-Time Feedback System  
8 9  Continuous-Time Circuit Analysis 
9 12  Sinusoidal Amplitude Modulation 

Total 100   



Problem 1. Continuous-Time Fourier Series.  10 points. 
One period of a periodic “UT” signal is shown below: 
 

 
 
The fundamental period T0 is 10 seconds. 
 
(a) Compute the Fourier series coefficients.  9 points. 

Average value over the fundamental period is  

𝒂𝟎 =   
𝟏
𝑻𝟎

𝒙 𝒕 𝒅𝒕
𝑻𝟎

𝟎
=
𝟒  +   𝟏  +   𝟒  +   (−𝟏)   +   (−𝟒)   +   (−𝟏)  

𝟏𝟎 =
𝟑
𝟏𝟎 

The Fourier series integral is “additive”. 
The “UT” signal is composed of six rectangular pulses of one second in duration. 
Here is the Fourier series of a rectangular pulse of height 1 lasting from t1 to t1+1 seconds: 

𝒂𝒌,𝒕𝟏 =
𝟏
𝑻𝟎

𝒆!𝒋𝟐𝝅 𝒌𝒇𝟎 𝒕𝒅𝒕
𝒕𝟏!𝟏

𝒕𝟏
=
𝟏
𝑻𝟎

𝒆!𝒋𝟐𝝅 𝒌𝒇𝟎 𝒕

−𝒋𝟐𝝅 𝒌𝒇𝟎 𝒕𝟏

𝒕𝟏!𝟏

=
𝟏
𝑻𝟎

𝒆!𝒋𝟐𝝅 𝒌𝒇𝟎 𝒕𝟏!𝟏 − 𝒆!𝒋𝟐𝝅 𝒌𝒇𝟎 𝒕𝟏

−𝒋𝟐𝝅 𝒌𝒇𝟎
 

 

𝒂𝒌,𝒕𝟏 = −
𝟏
𝑻𝟎

𝒆!𝒋𝟐𝝅 𝒌𝒇𝟎 − 𝟏
𝒋𝟐𝝅 𝒌𝒇𝟎

𝒆!𝒋𝟐𝝅 𝒌𝒇𝟎 𝒕𝟏 =
𝟏− 𝒆!𝒋𝟐𝝅 𝒌𝒇𝟎

𝒋𝟐𝝅𝒌 𝒆!𝒋𝟐𝝅 𝒌𝒇𝟎 𝒕𝟏 

 
𝒂𝒌 = 𝟒  𝒂𝒌,!𝟒 + 𝒂𝒌,!𝟑 + 𝟒  𝒂𝒌,!𝟐 − 𝒂𝒌,𝟏 − 𝟒  𝒂𝒌,𝟐 − 𝒂𝒌,𝟑 

See the MATLAB code on the next page. 
 
 

(b) If the periodic “UT” signal is synthesized using 100 Fourier series coefficients, will it suffer from 
Gibbs phenomenon?  1 point. 

 
Yes, for any finite number of Fourier series coefficients, Fourier series synthesis will suffer 
from Gibbs phenomenon at the amplitude discontinuities at t ∈  { -4, -3, -2, -1, 1, 2, 3, 4 }. 

See the MATLAB code on the next page. 
  

HW 8.4 

SPFirst page 55 
 

Lecture slide 3-8 
 



% Fourier synthesis to illustrate answers 
% for EE 313 Fall 2017 Final Exam Prob 1 
% Prof. Brian L. Evans 
% The University of Texas at Austin 
 
% Pick a value for the period of x(t) 
T0 = 10; 
f0 = 1 / T0; 
% Pick number Fourier synthesis terms 
N = 100; 
fmax = N * f0; 
% Define a sampling rate for plotting 
fs = 24 * fmax; 
Ts = 1 / fs; 
% Define samples in time for one period 
t = -0.5*T0 : Ts : 0.5*T0; 
% First Fourier synthesis term 
a0 = 0.3; 
x = a0 * ones(1, length(t)); 
figure; 
plot(t, x); 
hold on; 
% Generate each pair of synthesis terms 
for k = 1 : N 
    % Define Fourier coeffs at k and -k 
    akpos = 0; 
    akneg = 0; 
    t1vec = [ -4 -3 -2  1  2  3 ]; 
    C0vec = [  4  1  4 -1 -4 -1 ]; 
    for i = 1 : 6 
      t1 = t1vec(i); 
      C0 = C0vec(i); 
      akpos = akpos + C0 * exp(-j*2*pi*k*f0*t1) * (1 - exp(-j*2*pi*k*f0)) / 
(j*2*pi*k); 
      akneg = akneg + C0 * exp(-j*2*pi*(-k)*f0*t1) * (1 - exp(-j*2*pi*(-
k)*f0)) / (j*2*pi*(-k)); 
    end 
    theta = j*2*pi*k*f0*t; 
    x = x + akpos * exp(theta) + akneg * exp(-theta); 
    % Plot Fourier synthesis for indices -k ... k 
    plot(t, x); 
end 
hold off; 
 
close all; 
hold on 
plot(t, zeros(1, 24001)); 
plot(t, x) 



Problem 2. Discrete-Time Convolution.  12 points. 
Using forward and inverse z-transforms, derive the formula in the time domain for  

y[n] = x[n] * h[n] 
where 

𝑥 𝑛 = 𝑛𝑎!𝑢[𝑛] and ℎ 𝑛 = 𝑏!𝑢[𝑛] 
Here, a and b are complex-valued constants such that a ≠ b. 

𝒀 𝒛 = 𝑿 𝒛   𝑯 𝒛  where 𝑯 𝒛 = 𝟏
𝟏!𝒃  𝒛!𝟏  

 for |z| > |b| and 𝑿 𝒛 = 𝒂𝒛!𝟏

𝟏!𝒂  𝒛!𝟏
𝟐 for |z| > |a| 

Using partial fractions decomposition, 

𝒀 𝒛 = 𝒂𝒛!𝟏

𝟏!𝒂  𝒛!𝟏
𝟐

𝟏
𝟏!𝒃  𝒛!𝟏  

= 𝑪𝟏𝒛!𝟏

𝟏!𝒂  𝒛!𝟏
𝟐 +

𝑪𝟐
𝟏!𝒂  𝒛!𝟏  

+ 𝑪𝟑
𝟏!𝒃  𝒛!𝟏  

   (1) 

By putting terms over a common denominator, we have 3 equations in 3 unknowns C1, C2, C3: 

𝒀 𝒛 = !𝒃𝑪𝟏!𝒂𝒃𝑪𝟐!𝒂𝟐𝑪𝟑 𝒛!𝟐! 𝑪𝟏! 𝒂!𝒃 𝑪𝟐!𝟐𝒂𝑪𝟑 𝒛!𝟏! 𝑪𝟐!𝑪𝟑
𝟏!𝒂  𝒛!𝟏

𝟐
𝟏!𝒃  𝒛!𝟏  

= 𝒂𝒛!𝟏

𝟏!𝒂  𝒛!𝟏
𝟐
𝟏!𝒃  𝒛!𝟏  

    (2) 

First, isolate C1 by multiplying both sides of (1) by 𝒛   𝟏− 𝒂𝒛!𝟏 𝟐 and evaluate at z = a: 

𝑪𝟏 =
𝒂

𝟏!𝒃  𝒛!𝟏   𝒛!𝒂
= 𝒂

𝟏!𝒃𝒂
= 𝒂𝟐

𝒂!𝒃
    

Second, isolate C3 by multiplying both sides of (1) by 𝟏− 𝒃𝒛!𝟏 and evaluate at z = b: 

𝑪𝟑 =
𝒂𝒛!𝟏

𝟏!𝒂𝒛!𝟏
𝟐
𝒛!𝒃

=
𝒂
𝒃

𝟏!𝒂𝒃
𝟐 =   

𝒂𝒃
𝒃!𝒂 𝟐  

Third, from (2), we notice that C2 + C3 = 0, or 

𝑪𝟐 = −𝑪𝟑 = − 𝒂𝒃
𝒃!𝒂 𝟐  

𝒚 𝒏 = 𝑪𝟏𝒏𝒂𝒏𝒖 𝒏 + 𝑪𝟐𝒂𝒏𝒖 𝒏 + 𝑪𝟑𝒃𝒏𝒖 𝒏  
 

Z-transform approach to solving a convolution problem 
• Solution to homework 6.4(a) 
• Course Handout F “Convolution of Two Causal Exponential Sequences” 
Z-transforms 
• x[n]: Solution to homework 6.4(b) using Approach #2  
• h[n]: SPFirst Table 8-1 on page 217 or lecture slide 11-5 
Student used MATLAB command ztrans to find z-transform of x[n] using the Symbolic Toolbox: 
syms a n z 
f = n * (a^n) * heaviside(n); 
ztrans(f, n, z) 

The answer is 
(a*z)/(a - z)^2 



Problem 3. Discrete-Time Convolution II.  9 points. 
Compute the discrete-time convolution 

y[n] = x[n] * h[n] 
where 

x[n] is a causal rectangular pulse with an amplitude of 1 and a duration of Nx samples, and 
h[n] is a causal rectangular pulse with an amplitude of 1 and a duration of Nh samples. 

 
(a) Give a formula for y[n] in terms of Nx and Nh.  6 points. 

This is a discrete-time version of Midterm 2.2(a).  It is also related to Midterm 2.1(a). 

Convolving two causal signals gives a causal signal; hence, y[n] will be a causal signal. 
Also, y[n] will have Nx + Nh – 1 samples starting at n = 0 and ending at n = Nx + Nh – 2. 

𝒚 𝒏 = 𝒙 𝒏 ∗ 𝒉 𝒏 = 𝒉 𝒎   𝒙 𝒏−𝒎 = 𝒉 𝒎   𝒙 𝒏−𝒎
𝑵𝒉!𝟏

𝒎!𝟎

!

𝒎!!!

 

We are flipping signal x in the convolution variable m and shifting it by n. 
We will have five intervals of interest: (1) no overlap, (2) partial overlap with increasing amount 
of overlap as n increases, (3) complete overlap, (4) partial overlap with decreasing amount of 
overlap as n increases, and (5) no overlap.  See Handout E “Convolution of Rectangular Pulses”. 

Convolving two rectangular pulses of different lengths gives a trapezoid (Midterm 2 Problem 1). 
Let Nmin = min{ Nx, Nh } and Nmax = max{ Nx, Nh } and N = Nx + Nh – 1. 

𝒚 𝒏 =

𝟎                       𝐟𝐨𝐫  𝒏 <   𝟎
                (𝒏+ 𝟏)                             𝐟𝐨𝐫  𝟎 ≤ 𝒏 <   𝑵𝒎𝒊𝒏 − 𝟏

                                                          𝑵𝒎𝒊𝒏                           𝐟𝐨𝐫  𝑵𝒎𝒊𝒏 − 𝟏 ≤ 𝒏 ≤   𝑵𝒎𝒂𝒙 − 𝟏
𝑵𝒉 +𝑵𝒙 − 𝟏− 𝒏         𝐟𝐨𝐫  𝑵𝒎𝒂𝒙 − 𝟏 < 𝒏 <   𝑵

𝟎                 𝐟𝐨𝐫  𝒏 ≥ 𝑵

 

(b) Plot y[n].  3 points.  Plot shown for Nh = 3 an Nx = 6 which gives Nmin = 3 and Nmax = 6 and N = 8. 

HW 4.1; Handout E 

Slides 7-3 to 7-9; 7-13; 8-8 

SPFirst Sec. 5-2, 5-3 & 5-7 

Midterm 2 Problems 1 & 2 

h = [ 0 1 1 1 0]; 
x = [ 0 1 1 1 1 1 1 0]; 
y = conv(h, x); 
n = [-2 -1 0 1 2 3 4 5 6 7 8 9]; 
stem(n, y); 
ylim( [-0.2 3.2] ); 
 



Problem 4. Continuous-Time Convolution.  12 points. 
Convolve the two-sided continuous-time signals 

𝑥 𝑡 = cos(𝜔!𝑡) and ℎ 𝑡 = !"#  (!!!)
!!!

 

Both signals are defined for −∞ < 𝑡 < ∞. 

Both signals are two-sided in the time domain.  The time-domain approach to computing the 
convolution integral 𝒚 𝒕 = 𝒙 𝒕 ∗ 𝒉 𝒕  would be very involved.  The Laplace transform 
approach cannot be used because neither signal has a Laplace transform.   
However, both signals have continuous-time Fourier transforms.  We will compute the product 
of the continuous-time Fourier transforms of signals x(t) and h(t), i.e. 𝒀 𝒋𝝎 = 𝑿 𝒋𝝎 𝑯 𝒋𝝎 , and 
then take the inverse continuous-time Fourier transform of  𝒀 𝒋𝝎 . From SPFirst page 338, 

𝑿 𝒋𝝎 = 𝝅  𝜹(𝝎+𝝎𝟎)+ 𝝅  𝜹(𝝎−𝝎𝟎) 

𝑯 𝒋𝝎 =
𝝅
𝝎𝟏

𝒖(𝝎+𝝎𝟏 −   𝒖(𝝎−𝝎𝟏)) 

Note that 𝑯 𝒋𝝎  is an ideal lowpass filter that passes frequencies −𝝎𝟏   ≤ 𝝎 ≤ 𝝎𝟏 and 𝑿 𝒋𝝎  
only has frequency components at −𝝎𝟎  and 𝝎𝟎 : 

𝒚 𝒕 =
𝟎 𝐢𝐟  𝝎𝟏 < 𝝎𝟎

  
𝝅
𝝎𝟏

𝐜𝐨𝐬(𝝎𝟎𝒕) 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞 

y(t) is defined for −∞ < 𝒕 < ∞. 

 
  

HW 3.3 & 8.2 

Lecture slides 14-8 to 14-13 

Lecture slide 15-9 

SPFirst Ch. 11 pp. 338-339 

SPFirst Sec 10-2, 10-3 & 10-4 



Problem 5.  Discrete-Time FIR Filter Design.  12 points. 
Design a discrete-time finite impulse response (FIR) filter that will 

• Zero out 0 Hz, 

• Zero out all harmonics of 60 Hz, i.e. 60 Hz, 120 Hz, 180 Hz, 240 Hz, 300 Hz, 360 Hz, etc., and 

• Pass all other frequencies in the range (-240 Hz, 240 Hz) as much as possible 
The FIR filter is linear and time-invariant. 
 
(a) What sampling rate would you use?  Why?  3 points. 

The sampling rate fs should be chosen so that fs > 2 fmax. 
Since we would like to pass frequencies in the range -240 Hz < f < 240 Hz, the sampling rate 
should be fs ≥  480 Hz. 
We also want the sampling rate to be a multiple of 60 Hz.  This will allow multiples of 60 Hz 
that are greater than or equal to ½ fs to alias down to a multiple of 60 Hz less than ½ fs and 
will hence get filtered out. 
Let fs = 480 Hz. 

(b) How many zeros would the discrete-time FIR filter have?  Give formulas for them.  Plot them on a 
pole-zero plot.   6 points. 

In the z-domain, we will place a zero on the unit circle for each frequency to be zeroed out.  
For fs = 480 Hz, we would like to zero out continuous-time frequencies of -240 Hz, -180 Hz, 
-120 Hz, -60 Hz, 0 Hz, 60 Hz, 120 Hz, and 180 Hz. 

Mapping from continuous-time frequency f0 to discrete-time frequency 𝝎𝟎 is 𝝎𝟎 = 𝟐𝝅 𝒇𝟎
𝒇𝒔

 . 

Due to sampling, a continuous-time frequency of -240 Hz will map to a discrete-time 
frequency of –π  and 240 Hz will map to a discrete-time frequency of π .  Since the discrete-
time frequency domain is periodic with period 2π , eliminating -½ fs will also eliminate ½ fs. 

We need 8 zeros in the z-domain.  Each zero has the form 𝒛 = 𝒆𝒋𝝎𝒊 where 𝝎𝒊 = 𝟐𝝅 𝒇𝒊
𝒇𝒔

 and 
𝒇𝒊  𝝐  {−𝟐𝟒𝟎,−𝟏𝟖𝟎,−𝟏𝟐𝟎,−𝟔𝟎,𝟎,𝟔𝟎,𝟏𝟐𝟎,𝟏𝟖𝟎  } and fs = 480 Hz. Zeros are equally spaced on 
the unit circle at angles -π/2, -3π/4, -π/2, -π/4, 0, π/4, π/2, and 3π/4, respectively. 
There are no poles, or one could say that there are  
eight “artificial” poles at the origin in the z-domain. 

(c) Give the formula for the impulse response for the discrete-time 
FIR filter.  Please simplify the formula as much as possible.  3 points. 

“Echo” filter from Mini-Project #2:  𝒉 𝒏 = 𝜹 𝒏 − 𝜹 𝒏− 𝟖  

Transfer function in the z-domain is 𝑯 𝒛 = 𝟏− 𝒛!𝟖 and 
its zeros are eight roots of unity. 

SPFirst Sec. 7-6 & 7-7Mini-Project #2 Midterm 2.5(b)HW 5.2(c) & 5.3(c) Slides 11-10 & 11-11  



Problem 6.  Discrete-Time IIR Filter Design.  12 points. 
A sinusoidal signal of interest has a principal frequency that can vary over time in the range 1-3 Hz. 

Using a sampling rate of fs = 20 Hz, a sinusoidal signal was acquired for 2s and shown below on the 
left in the upper plot.  The lower plot is the magnitude of the signal’s frequency content. 

The acquired signal has interference and other impairments that reduce the signal quality. 
The signal shown below on the right is the sinusoidal signal without the impairments. 

 
 

 
 

 
 

 
 

 
Design a second-order infinite impulse response (IIR) filter to filter the acquired signal above on the 
left to give the sinusoidal signal above on the right.  Note: Upper right signal is a chirp signal. 
(a) Give the two poles and the two zeros of the second-order IIR filter.  9 points. 

Passband: 1-3 Hz with center frequency fc = 2 Hz.  𝝎𝒄 = 𝟐𝝅 𝒇𝒄
𝒇𝒔
= 𝟐𝝅 𝟐

𝟐𝟎
= 𝝅

𝟓
 

Poles at 𝒑𝟎 = 𝟎.𝟗𝒆𝒋𝝎𝒄 and 𝒑𝟏 = 𝟎.𝟗𝒆!𝒋𝝎𝒄 
Stopbands:  Remove impairments around 0 Hz and in 4-10 Hz range. 

Zeros at 𝒛𝟎 = 𝒆𝒋𝟎 = 𝟏 and 𝒛𝟏 = 𝒆𝒋𝟐𝝅
𝟏𝟎𝑯𝒛
𝟐𝟎𝑯𝒛 = 𝒆𝒋𝝅 = −𝟏 

In the time domain plots, signal with interference and filtered signal are real-valued.  Hence, 
filter coefficients must be real-valued, which means that zeros are either real-valued or in a 
conjugate symmetric pair and poles are either real-valued or in a conjugate symmetric pair. 

(b) Draw the pole-zero diagram for the second-order IIR filter. 
3 points.  Pole-zero plot is drawn by hand below. 

 

 

  

t t 

f f 

Slides 11-9, 11-10 & 11-11 SPFirst Sec. 8-4, 8-5 & 8-9  HW 5.3, 6.1 & 6.3 

% zeros on unit circle 
z0 = 1; 
z1 = -1; 
numer = [1 -(z0+z1) z0*z1]; 
% poles inside unit circle 
r = 0.9; poleAngle = pi/5; 
p0 = r * exp(j*poleAngle); 
p1 = r * exp(-j*poleAngle); 
denom = [1 -(p0+p1) p0*p1]; 
% pole-zero plot 
zplane(numer, denom); 
% frequency response plot 
figure; 
freqz(numer, denom); 
 

SPFirst Fig. 8-23 Page 233  



Problem 7. Continuous-Time Feedback System.  12 points. 
Consider a linear time-invariant (LTI) system with input signal x(t) and output signal y(t) that is 
governed by the following second-order differential equation for t ≥ 0:  

𝑦" 𝑡 + 6  𝑦′(𝑡)+ 𝐾  𝑦(𝑡) = 𝑥(𝑡) 
where K is a real-valued constant. 

(a) Derive the transfer function H(s) for the system, which will depend on K.  3 points. 
Because the system is LTI, the initial conditions y(0) and y’(0) have to be zero. 

We take the Laplace transform of both sides of the equation to obtain 

𝒔𝟐  𝒀 𝒔 + 𝟔  𝒔  𝒀 𝒔 +𝑲  𝒀 𝒔 = 𝑿(𝒔) 

𝒔𝟐 + 𝟔𝒔+𝑲   𝒀 𝒔 = 𝑿(𝒔) 

𝑯 𝒔 =
𝒀(𝒔)
𝑿(𝒔) =

𝟏
𝒔𝟐 + 𝟔𝒔+𝑲   

(b) Give the range of values for K for which the system is bounded-input bounded-output (BIBO) 
stable.  6 points. 
For a BIBO stable system, the poles must be in the left-hand side of the Laplace domain, i.e. 
have negative real components. 
Using the quadratic formula to find the roots of the denominator, poles p0 and p1 are at 

−𝟔± 𝟔𝟐 − 𝟒(𝟏)𝑲
𝟐 = −𝟑± 𝟗−𝑲 

When 9 – K ≥  0 or K ≤  9, poles are real-valued. For K = 0, poles are at s = 0 and s = -6, which 
is BIBO unstable due to the pole at s = 0.  The system is BIBO stable for 0 < K ≤  9. 
When 9 – K < 0 or when K > 9, the poles have a real component of -3 and imaginary 
components of ± 𝑲− 𝟗 .  The system is BIBO stable for K > 9. 
The system is BIBO stable for K > 0. 

(c) Describe the possible frequency selectivity (lowpass, highpass, bandpass, bandstop, allpass or 
notch) that the system could exhibit for different values of K for which the system is BIBO stable.  
3 points. 
The system is BIBO stable for K > 0.  For K > 0, we can convert the transfer function in the 
Laplace domain to the Fourier domain by substituting s = j ω . 

𝑯 𝒋𝝎 = 𝟏
!𝝎𝟐!𝟔𝒋𝝎!𝑲

= 𝟏
𝒋𝝎!𝒑𝟎 𝒋𝝎!𝒑𝟏

 

For 0 < K ≤  9, the poles are real-valued, which means a lowpass frequency response. 
As K increases beyond 9, it will eventually become bandpass in its frequency response with a 
center frequency in rad/s equal to the imaginary components of the pole locations. 

 
  

Slides 18-5, 18-7 & 18-8 

Slides 18-9, 18-10 & 18-11 

Slides 18-9, 18-10 & 18-11 

HW 9.3 & 9.4 

SPFirst Sec. 16-6.2 



Problem 8.  Continuous-Time Circuit Analysis.  9 points. 
Consider the following analog continuous-time circuit with input voltage x(t) and output voltage y(t): 

 
The initial voltage across the capacitor is 0V, and hence, the circuit is a linear time-invariant system. 
(a) Using the voltage drop around the loop 

𝑥 𝑡 −
1
𝐶 𝑖 𝑡 𝑑𝑡 − 𝑅𝑖 𝑡 = 0

!

!!
 

take the Laplace transform of both sides of the equation to find the relationship between X(s) and 
I(s).  I(s) is the Laplace transform of the current i(t).  2 points. 
Because the system is LTI, the initial current and voltage across the capacitor is zero. 

Taking the Laplace transform of both sides of the equation gives 

𝑿 𝒔 − 𝟏
𝑪𝒔
𝑰 𝒔 − 𝑹  𝑰 𝒔 = 𝟎 which gives 𝑿 𝒔 = 𝟏

𝑪𝒔
𝑰 𝒔 + 𝑹  𝑰 𝒔 = 𝑹+ 𝟏

𝑪𝒔
𝑰(𝒔) 

(b) Using the formula for the voltage across the resistor 

𝑦 𝑡 = 𝑅  𝑖(𝑡) 
take the Laplace transform of both sides and substitute the expression for I(s) obtained in part (a) 
to obtain the transfer function H(s) in the Laplace domain so that H(s) = Y(s) / X(s).   2 points. 

𝒀 𝒔 = 𝑹  𝑰 𝒔 = 𝑹 𝑿(𝒔)

𝑹! 𝟏
𝑪𝒔

= 𝒔

𝒔! 𝟏
𝑹𝑪

𝑿(𝒔) which means that 𝑯 𝒔 = 𝒀(𝒔)
𝑿(𝒔)

= 𝒔

𝒔! 𝟏
𝑹𝑪

 

 
(c) Find a formula for the frequency response H(jω) of the circuit.  2 points. 

The pole in the transfer function in part (b) is at 𝒔 = − 𝟏
𝑹𝑪

 which is real-valued and negative. 
Since pole is negative and real-valued, system is BIBO stable and we can substitute s = j ω: 

𝑯 𝒋𝝎 = 𝒋𝝎

𝒋𝝎! 𝟏
𝑹𝑪

 

 
(d) What is the frequency selectivity of the circuit?  Lowpass, highpass, bandpass, bandstop, allpass or 

notch.  Why?  3 points. 

When ω  = 0, |H(j ω)| = 0.  
As ω  →  ∞ , |H(j ω)| →  1.  
Highpass response.  
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Problem 9.  Sinusoidal Amplitude Modulation.  12 points. 
Mixing provides an efficient implementation in analog continuous-time circuits for sinusoidal 
amplitude modulation of the form 

s(t) = m(t) cos(2 π fc t) 

where m(t) is the baseband message signal with bandwidth W, and 
fc is the carrier frequency such that fc > W 

 
 
 

 
 

 
 

 
 

Note: The units for bandwidth W are in Hz.  
This comes from the statement fc > W and fc is in Hz. 
(a) Assume h1(t) is an ideal lowpass filter. Give the range of negative 

and positive frequencies that it passes.  3 points. 
 

A baseband spectrum is a spectrum centered at zero frequency (SPFirst p. 360 left column). 
Baseband message signal m(t) has frequencies –W ≤  f ≤  W (SPFirst Fig. 12-14(a) on p. 360). 
The ideal lowpass filter h1(t) passes frequencies –W ≤  f ≤  W. 
 

(b) Assume h2(t) is an ideal bandpass filter. Give the range of negative 
and positive frequencies that it passes. 3 points 
 

Bandpass signal s(t) = s(t) = m(t) cos(2 π  fc t) has a bandwidth of 2W centered at fc . 

The ideal bandpass filter h2(t) passes frequencies fc – W ≤ f ≤ fc + W and –fc – W ≤ f ≤ –fc + W. 
(c) Draw the magnitude of the Fourier transforms of m(t), x(t), and s(t).  You do not need to draw the 

magnitude of the Fourier transform of v(t). 6 points. 
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