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• This in-person exam is scheduled to last two hours. 

• Open books, open notes, and open class materials, including homework assignments and 

solution sets and previous midterm exams and solutions. 

• Calculators are allowed. 

• You may use any standalone computer system, i.e. one that is not connected to a network.  

• Please disable all wireless connections on your calculator(s) and computer system(s). 

• Please mute all computer systems. 

• Please turn off all phones. 

• No headphones are allowed. 

• All work should be performed on the midterm exam.  If more space is needed, then use 

the backs of the pages. 

• Fully justify your answers.  If you decide to quote information from a source, please 

give the quote, page number and source citation. 

 

 

 

Problem Point Value Your Score Topic 

1 16  Continuous-Time Rectangular Pulse 

2 18  Discrete-Time Convolution 

3 18  Continuous-Time System Properties 

4 18  Discrete-Time Filter Design 

5 16  Continuous-Time Downconversion 

6 14  Discrete-Time Mystery Systems 

Total 100   

  



Problem 1. Continuous-Time Rectangular Pulse. 16 points 

Consider a rectangular pulse signal 𝑟𝑒𝑐𝑡(𝑡) defined as 

𝑟𝑒𝑐𝑡(𝑡) =  [
1 for − 0.5 ≤ 𝑡 < 0.5
0  otherwise

 

which is plotted on the right. 

 

(a) Plot 𝑟𝑒𝑐𝑡(𝑡 − 0.5). 4 points. 

This delays 𝒓𝒆𝒄𝒕(𝒕) by 0.5 seconds; i.e.,  

𝒓𝒆𝒄𝒕(𝒕) is shifted to the right by 0.5 seconds. 

𝒓𝒆𝒄𝒕(𝒕 − 𝟎. 𝟓) =  [
𝟏 𝐟𝐨𝐫 − 𝟎. 𝟓 ≤ 𝒕 − 𝟎. 𝟓 < 𝟎. 𝟓
𝟎  𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 

 

𝒓𝒆𝒄𝒕(𝒕 − 𝟎. 𝟓) =  [
𝟏 𝐟𝐨𝐫 𝟎 ≤ 𝒕 < 𝟏. 𝟎
𝟎  𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 

(b) Plot 𝑟𝑒𝑐𝑡(0.5 − 𝑡). 4 points. 

This flips 𝒓𝒆𝒄𝒕(𝒕) in time and then delays it  

by 0.5 seconds. 

𝒓𝒆𝒄𝒕(𝟎. 𝟓 − 𝒕) =  [
𝟏 𝐟𝐨𝐫 − 𝟎. 𝟓 ≤ 𝟎. 𝟓 − 𝒕 < 𝟎. 𝟓
𝟎  𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 

𝒓𝒆𝒄𝒕(𝟎. 𝟓 − 𝒕) =  [
𝟏 𝐟𝐨𝐫 − 𝟏. 𝟎 ≤ −𝒕 < 𝟎. 𝟎
𝟎  𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 

𝒓𝒆𝒄𝒕(𝟎. 𝟓 − 𝒕) =  [
𝟏 𝐟𝐨𝐫 𝟎. 𝟎 < 𝒕 ≤ 𝟏. 𝟎
𝟎  𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 

(c) Plot 𝑟𝑒𝑐𝑡 (
𝑡

2
). 4 points. 

Rectangular pulse will double in width. 

𝒓𝒆𝒄𝒕 (
𝒕

𝟐
) =  [𝟏 𝐟𝐨𝐫 − 𝟎. 𝟓 ≤

𝒕

𝟐
< 𝟎. 𝟓

𝟎  𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
 

𝒓𝒆𝒄𝒕 (
𝒕

𝟐
) =  [

𝟏 𝐟𝐨𝐫 − 𝟏. 𝟎 ≤ 𝒕 < 𝟏. 𝟎
𝟎  𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 

 

(d) Plot 𝑟𝑒𝑐𝑡 (
𝑡 − 0.5

2
). 4 points. 

Rectangular pulse will be doubled in width  

and then delayed by 0.5 seconds. 

𝒓𝒆𝒄𝒕 (
𝒕 −  𝟎. 𝟓

𝟐
) =  [𝟏 𝐟𝐨𝐫 − 𝟎. 𝟓 ≤

𝒕 −  𝟎. 𝟓

𝟐
< 𝟎. 𝟓

𝟎  𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 

𝒓𝒆𝒄𝒕 (
𝒕 −  𝟎. 𝟓

𝟐
) =  [

𝟏 𝐟𝐨𝐫 − 𝟏. 𝟎 ≤ 𝒕 − 𝟎. 𝟓 < 𝟏. 𝟎
𝟎  𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 

𝒓𝒆𝒄𝒕 (
𝒕 −  𝟎. 𝟓

𝟐
) =  [

𝟏 𝐟𝐨𝐫 − 𝟎. 𝟓 ≤ 𝒕 < 𝟏. 𝟓
𝟎  𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 



Problem 2. Discrete-Time Convolution. 18 points 

Consider a discrete-time linear time-invariant (LTI) 

system with impulse response ℎ[𝑛] = 𝛿[𝑛] + 𝛿[𝑛 − 1] 
plotted on the right. 

 

For each of the following input signals,  

i.  give a formula for the input signal. 2 points each. 

ii. plot the output signal 𝑦[𝑛]. 4 points each. 

 

(a) 𝒙𝟏[𝒏] = 𝜹[𝒏] − 𝜹[𝒏 − 𝟏] + 𝜹[𝒏 − 𝟐] − 𝜹[𝒏 − 𝟑] 

Here, 𝑥1[𝑛] has four non-zero values. 

 

 

 

 

 

 

 

 

 

 

(b) 𝒙𝟐[𝒏] = (−𝟏)𝒏 𝒖[𝒏] 

Here, 𝑥2[𝑛] is 0 for 𝑛 < 0.  For 𝑛 ≥ 0, 𝑥2[𝑛] 
alternates between 1 and -1 indefinitely. 

 

 

 

 

 

 

 

 

 

 

(c) 𝒙𝟑[𝒏] = (−𝟏)𝒏 

Here, 𝑥3[𝑛] alternates between 1 and -1 for all 𝑛. 

 

 

 

 

 

 

 

  

Plot 𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥1[𝑛] 

Plot 𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥2[𝑛] 

Plot 𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥3[𝑛] 

𝒚[𝒏] = 𝜹[𝒏] − 𝜹[𝒏 − 𝟒] 

conv( [1 1], [1, -1, 1, -1] ) 

𝒚[𝒏] = 𝜹[𝒏] 

𝒚[𝒏] = 𝟎 



Problem 3. Continuous-Time System Properties.  18 points 

Each continuous-time system has input 𝑥(𝑡) and output 𝑦(𝑡), and 𝑥(𝑡) and 𝑦(𝑡) might be complex-

valued. 

Determine if each system is linear or nonlinear, time-invariant or time-varying, and bounded-input 

bounded-output (BIBO) stable or unstable. 

You must either prove that the system property holds in the case of linearity, time-invariance, or stability, 

or provide a counter-example that the property does not hold.  Providing an answer without any 

justification will earn 0 points. 

Part System Name System Formula Linear? Time-Invariant? BIBO Stable? 

(a) Integrator 
𝑦(𝑡) = 𝐶0 + ∫ 𝑥(𝑢) 𝑑𝑢  

𝑡

0− 

 

for 𝑡 ≥ 0−  and  𝐶0 = 5     

 

NO 

 

NO 

 

NO 

(b) Amplitude 

Modulation 

𝑦(𝑡) = 𝑥(𝑡) cos(2 𝜋 𝑓𝑐 𝑡) 

for 𝑡 ≥ 0 where 𝑓𝑐  is a constant 

` 

YES 

 

NO 

 

YES 

(c) Reciprocal 
𝑦(𝑡) =

1

𝑥(𝑡)
 for − ∞ < 𝑡 < ∞ 

 

NO 

 

YES 

 

NO 

Linearity. We’ll first apply the all-zero input test. If the output is not zero for all time, then the system is 

not linear.  Otherwise, we’ll have to apply the definitions for homogeneity and additivity.  All-zero input 

test is a special case of homogeneity 𝒂 𝒙(𝒕) → 𝒂 𝒚(𝒕) when the constant 𝒂 = 𝟎. 

BIBO Stability.  Bounded input | 𝒙(𝒕)| ≤ 𝑩 < ∞ would give bounded output |𝒚(𝒕)| ≤ 𝑪 < ∞. 

(a) Integrator:  𝑦(𝑡) = 𝐶0 + ∫ 𝑥(𝑢) 𝑑𝑢  
𝑡

0− 
 for 𝑡 ≥ 0−  and  𝐶0 = 5.  6 points. 

Linearity.  When 𝒙(𝒕) = 𝟎 𝐟𝐨𝐫 𝒕 ≥ 𝟎−, y(𝒕) = 𝑪𝟎 = 𝟓 𝐟𝐨𝐫 𝒕 ≥ 𝟎−.  Fails all-zero input test.  NO. 

Time-Invariance. 𝒚𝒔𝒉𝒊𝒇𝒕𝒆𝒅(𝒕) = 𝒚(𝒕 − 𝒕𝟎)? 𝒚(𝒕 − 𝒕𝟎) = 𝑪𝟎 + ∫ 𝒙(𝒖) 𝒅𝒖 
𝒕−𝒕𝟎

𝟎− 
𝐟𝐨𝐫 𝒕 ≥ 𝟎− 𝐚𝐧𝐝  𝑪𝟎 = 𝟓. Input 

𝒙(𝒕 − 𝒕𝟎) and output is 𝒚𝒔𝒉𝒊𝒇𝒕𝒆𝒅(𝒕) = 𝑪𝟎 + ∫ 𝒙(𝒖 − 𝒕𝟎) 𝒅𝒖
𝒕

𝟎− 
. Per the class handout “Time Invariance for 

an Integrator”, 𝑪𝟎 = 𝟎 is a necessary condition for time-invariance to hold.  NO. 

BIBO Stability.  Let 𝒙(𝒕) = 𝒖(𝒕).  𝒚(𝒕) = 𝑪𝟎 + ∫ 𝒖(𝝀) 𝒅𝝀
𝒕

𝟎− 
 which grows without bound.  NO. 

(b) Amplitude Modulation: 𝑦(𝑡) = 𝑥(𝑡) cos(2 𝜋 𝑓𝑐  𝑡) for 𝑡 ≥ 0 where 𝑓𝑐  is a constant. 6 points. 

Linearity. Passes all-zero input test.  Satisfies homogeneity and additivity properties (below).  YES. 

Homogeneity. Input 𝒂 𝒙(𝒕). 𝒚𝒔𝒄𝒂𝒍𝒆𝒅(𝒕) =  (𝒂 𝒙(𝒕)) 𝐜𝐨𝐬(𝟐 𝝅 𝒇𝒄 𝒕) = 𝒂 (𝒙(𝒕) 𝐜𝐨𝐬(𝟐 𝝅 𝒇𝒄 𝒕)) = 𝒂 𝒚(𝒕).  YES. 

Additivity. Input 𝒙𝟏(𝒕) + 𝒙𝟐(𝒕). 𝒚𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆(𝒕) = (𝒙𝟏(𝒕) + 𝒙𝟐(𝒕)) 𝐜𝐨𝐬(𝟐 𝝅 𝒇𝒄 𝒕) = 𝒙𝟏(𝒕) 𝐜𝐨𝐬(𝟐 𝝅 𝒇𝒄 𝒕) +

𝒙𝟐(𝒕) 𝐜𝐨𝐬(𝟐 𝝅 𝒇𝒄 𝒕) = 𝒚𝟏(𝒕) + 𝒚𝟐(𝒕). YES. 

Time-Invariance. 𝒚𝒔𝒉𝒊𝒇𝒕𝒆𝒅(𝒕) = 𝒚(𝒕 − 𝒕𝟎)?  𝒚(𝒕 − 𝒕𝟎) = 𝒙(𝒕 − 𝒕𝟎) 𝐜𝐨𝐬(𝟐 𝝅 𝒇𝒄 (𝒕 − 𝒕𝟎)).  Input 𝒙(𝒕 − 𝒕𝟎) 

and output is 𝒚𝒔𝒉𝒊𝒇𝒕𝒆𝒅(𝒕) = 𝒙(𝒕 − 𝒕𝟎) 𝐜𝐨𝐬(𝟐 𝝅 𝒇𝒄 𝒕).  NO. 

BIBO Stability.  |𝒚(𝒕)| = |𝒙(𝒕) 𝐜𝐨𝐬(𝟐 𝝅 𝒇𝒄 𝒕)| = |𝒙(𝒕)| |𝐜𝐨𝐬(𝟐 𝝅 𝒇𝒄 𝒕)| ≤ |𝒙(𝒕)| < 𝑩 < ∞.  YES. 

(c) Reciprocal: 𝑦(𝑡) =
1

𝑥(𝑡)
 for − ∞ < 𝑡 < ∞.  6 points. 

Linearity:  Does not pass the all-zero input test.  When 𝒙[𝒏] = 𝟎 𝐟𝐨𝐫 − ∞ < 𝑛 < ∞, 𝒚[𝒏] =
𝟏

𝟎
 .  If we take 

the limit as 𝒙[𝒏] → 𝟎, then 𝒚[𝒏] → ∞.  NO. 

Time-Invariance: Pointwise operation; current output value 𝒚[𝒏] depends only on current input 𝒙[𝒏] and 

not on any other input/output values.  All pointwise operations are time-invariant.  YES. 

BIBO Stability.  When 𝒙[𝒏] = 𝟎 𝐟𝐨𝐫 − ∞ < 𝑛 < ∞, 𝒚[𝒏] → ∞ in the limit.  No bounded.  NO. 

https://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20W%20Time%20Invariance%20for%20an%20Integrator.pdf
https://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20W%20Time%20Invariance%20for%20an%20Integrator.pdf


Problem 4. Discrete-Time Filter Design.  18 points. 

A sinusoidal signal of interest has a principal frequency that can vary over time in the range 1-3 Hz. 

Using a sampling rate of fs = 20 Hz, a sinusoidal signal was acquired for 2s and shown below on the left 

in the upper plot.  The lower plot is the magnitude of the signal’s frequency content. 

The acquired signal has interference and other impairments that reduce the signal quality. 

The signal shown below on the right is the sinusoidal signal without the impairments. 

 

 

 

 

 

 

 

 

Design a second-order infinite impulse response (IIR) filter to filter the acquired signal above on the left 

to give the sinusoidal signal above on the right.  Filter should be bounded-input bounded-output stable. 

(a) Give the poles and zeros of the second-order IIR filter.  Explain why you chose the poles and zeros.  

12 points. 

Passband: 1-3 Hz with center frequency 𝒇𝒄 of 2 Hz.  

Two poles would be at angles equal to the center 

frequency and its negative counterpart, with 

magnitudes close to but inside the unit circle:  

𝟎. 𝟗 𝒆𝒋 𝝎̂𝒄 and 𝟎. 𝟗 𝒆−𝒋 𝝎̂𝒄 .  𝝎̂𝒄 is computed on right. 

Stopbands: From the above magnitude plot of the left, impairments are around DC (0 Hz) as 

well as 4-10 Hz and the negative counterparts -10 Hz to -4 Hz.  Two zeros on unit circle at 

angles corresponding to the center frequencies of the two stopbands, i.e., 0 Hz and 10 Hz which 

are 0 and 𝟐 𝝅 
𝟏𝟎 𝑯𝒛

𝟐𝟎 𝑯𝒛
= 𝝅 rad/sample:  𝒆𝒋 𝟎 = 𝟏 and 𝒆𝒋 𝝅 = −𝟏. 

(b) Draw the pole-zero diagram for the second-order IIR filter.  6 points. 

 

 

  

t t 

f f 

𝝎̂𝒄 = 𝟐𝝅
𝒇𝒄

𝒇𝒔
= 𝟐𝝅

𝟐 𝑯𝒛

𝟐𝟎 𝑯𝒛
=

𝝅

𝟓
 𝐫𝐚𝐝/𝐬𝐚𝐦𝐩𝐥𝐞 



Problem 5.  Continuous-Time Downconversion.  16 points. 

A signal x(t) is input to a mixer to produce the output y(t) where 

y(t) = x(t) cos(0 t) 

where 0 = 2  f0 and f0 = 5 kHz.  A block diagram of the mixer is shown below on the right. 

The Fourier transform of x(t) is shown below on the left where 1 = 2  f1 and f1 = 1 kHz. 

 

(a) Using Fourier transform properties, derive an expression for Y(j) in terms of X(j).  8 points. 

Approach #1:  

 

 

 

 

Approach #2:  𝒙(𝒕) 𝐜𝐨𝐬(𝝎𝟎 𝒕) = 𝒙(𝒕) (
𝟏

𝟐
 𝒆𝒋 𝝎𝟎 𝒕 +

𝟏

𝟐
𝒆−𝒋 𝝎𝟎 𝒕 ) 

Apply the frequency shift property for the continuous-time Fourier transform 

per Signal Processing First, Sec. 12.2-1. 

(b) Sketch Y(j) vs. .  Label all important points on the horizontal and vertical axes.  6 points. 

 

(c) What operation would you apply to the signal y(t) in part (b) to pass frequencies from -1 to 1 and 

attenuate other frequencies?  This will allow us to recover the message signal that was transmitted 

using amplitude modulation.  2 points. 

Lowpass filter that would pass frequencies from -1 to 1 and attenuate frequencies from -

20 - 1 to -20 + 1 and from 20 - 1 to 20 + 1. 

 

y t( ) = x t( )  cos w0t( )

Y jw( ) =
1

2p
X jw( )* pd w +w0( ) +pd w -w0( )( )

Recall that

Y jw( ) =
1

2
X j(w +w0 )( ) +

1

2
X j(w -w0 )( )

𝑥(𝑡) ∗ 𝛿(𝑡 − 𝑡0) = ∫ 𝛿(𝜏 − 𝑡0) 𝑥(𝑡 − 𝜏)
∞

−∞

𝑑𝜏 = 𝑥(𝑡 − 𝑡0) 



Problem 6. Discrete-Time Mystery Systems.  14 points. 

You’re trying to identify unknown discrete-time systems. 

You input a discrete-time chirp signal 𝑥[𝑛] and look at the output to figure out what the system is. 

The discrete-time chirp is formed by sampling a chirp signal that sweeps 0 to 8000 Hz over 0 to 5s 

𝑥(𝑡) = cos(2𝜋𝑓1𝑡 + 2𝜋𝜇𝑡2) 

where 𝑓1 = 0 Hz, 𝑓2 = 8000 Hz, and 𝜇 =
𝑓2−𝑓1

2 𝑡max
=

8000 Hz

10 𝑠
= 800 Hz2.  Sampling rate 𝑓𝑠 is 16000 Hz. 

In part (a) and (b) blow, identify the unknown system as one of the following with justification: 

1. filter – give selectivity (lowpass, highpass, bandpass, bandstop) and passband/stopband frequencies 

2. pointwise nonlinearity – give the integer exponent k to produce the output 𝑦[𝑛] = 𝑥𝑘[𝑛] 

 

(a) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right).  7 points. 

 
In the output spectrogram, principal frequencies of the chirp input signal between 2 and 4 kHz 

are severely attenuated and other principal frequencies are passed.  No new frequencies are 

created, so it is likely an LTI filter. Bandstop filter.  See next page for the Matlab code. 

(b) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right).  7 points. 

 

 

 

 

 

 

 

 

 

 

 

 

The output spectrogram had a strong DC component over all time whereas the input signal only 

has a DC component at the very beginning of the chirp signal.  New frequencies are being 

created, so it’s not an LTI system.  At any point in time from 0s to 2.5s, the frequency 

Please note that the output spectrogram has a strong component at DC (0 rad/sample).  



component in the output spectrogram that rises from 0 Hz to 8000 Hz is twice the principal 

frequency component in the input spectrogram.  The system is a squaring block.  When 

inputting 𝐜𝐨𝐬(𝝎𝟎 𝒕) into a square block, the output is 𝐜𝐨𝐬𝟐(𝝎𝟎 𝒕) =
𝟏

𝟐
+

𝟏

𝟐
𝐜𝐨𝐬(𝟐 𝝎𝟎 𝒕). 

 
%% Midterm Problem 2.4 

fs = 16000; 

Ts = 1 / fs; 

tmax = 5; 

t = 0 : Ts : tmax; 

  

%% Create chirp signal 

f1 = 0; 

f2 = fs/2; 

mu = (f2 - f1) / (2*tmax); 

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2)); 

 

%% (a) bandstop filter 

fnyquist = fs/2; 

fstop1 = 1800; 

fpass1 = 2000; 

fpass2 = 4000; 

fstop2 = 4200; 

ctfrequencies = [0 fstop1 fpass1 fpass2 fstop2 fnyquist]; 

idealAmplitudes = [1 1 0 0 1 1]; 

pmfrequencies = ctfrequencies / fnyquist; 

filterOrder = 400; 

h = firpm( filterOrder, pmfrequencies, idealAmplitudes ); 

h = h / sum(h .^ 2); 

  

y = conv(x, h); 

  

%%% Spectrogram parameters 

blockSize = 1024;  

overlap = 1023; 

 

%%% Plot spectrogram of input signal 

figure; 

spectrogram(x, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; 

  

%%% Plot spectrogram of output signal 

figure; 

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; 

 

 

%% (b) squaring block 

figure; 

spectrogram(x, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; 

  

%%% Plot spectrogram of output signal 

figure; 

spectrogram(x.^2, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; 


