The University of Texas at Austin
Dept. of Electrical and Computer Engineering Midterm \#2 Version 2.0

Date: November 16, 2017
Course: EE 313 Evans

Name: \qquad
Last,

Heroes of

First

- The exam is scheduled to last 75 minutes.
- Open books and open notes. You may refer to your homework assignments and the homework solution sets.
- Calculators are allowed.
- You may use any standalone computer system, i.e. one that is not connected to a network.
- Please disable all wireless connections on your calculator(s) and computer system(s).
- Please turn off all cell phones.
- No headphones are allowed.
- All work should be performed on the midterm exam. If more space is needed, then use the backs of the pages.
- Fully justify your answers. If you decide to quote text from a source, please give the quote, page number and source citation.

Problem	Point Value	Your score	Topic
1	18		Discrete-Time Convolution
2	18		Continuous-Time Convolution
3	18		Discrete-Time First-Order System
4	24		Discrete-Time Second-Order System
5	22		Potpourri
Total	100		

Problem 2.1 Discrete-Time Convolution. 18 points.
(a) Plot $y[n]=h[n] * x[n]$ using the rectangular pulse signals below. 9 points.

Convolution formula:

$$
y[n]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]=h[0] x[n]+h[1] x[n-1]=x[n]+x[n-1]
$$

Convolving two causal signals gives a causal result.
Convolving two finite-length signals of lengths L_{h} and L_{x} gives a result of length $L_{h}+L_{x}-1$.

Convolving two rectangular pulses of different lengths gives a trapezoid.

$$
\left.\begin{array}{l}
\mathrm{h}=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0
\end{array}\right] ; \\
\mathrm{x}=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0
\end{array}\right] ; \\
\mathrm{y}=\operatorname{conv}(\mathrm{h}, \mathrm{x}) ; \\
\mathrm{n}=\left[\begin{array}{ccccccc}
-2 & -1 & 0 & 1 & 2 & 3 & 4
\end{array}\right) \\
\text { stem }(\mathrm{n}, \mathrm{y}) ;
\end{array}\right] ;
$$

(b) Plot $y[n]=h[n] * u[n]$ using the signals below, where $h[n]$ is a rectangular pulse and $u[n]$ is the unit step signal. 9 points.

Convolution formula:

$$
y[n]=\sum_{m=-\infty}^{\infty} h[m] u[n-m]=h[0] u[n]+h[1] u[n-1]=u[n]+u[n-1]
$$

Convolving two causal signals gives a causal result.

Problem 2.2 Continuous-Time Convolution. 18 points.
(a) Plot $y(t)=h(t) * x(t)$ using the rectangular pulse signals below. 9 points.

Convolution formula: $h(t) * x(t) \equiv \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$

Convolving two causal signals gives a causal result.

Convolving two finite-length signals of lengths L_{h} and L_{x} gives a result of length $L_{h}+L_{x}$.

For $0<\boldsymbol{t} \leq 2: \quad \int_{0}^{t} 1 d \tau=t$

For $2<\boldsymbol{t} \leq 3$ 3: $\quad \int_{t-2}^{t} 1 d \tau=2$

Convolving two rectangular pulses of different lengths gives a trapezoid.

For $2<t \leq 3$:
$\int_{t-2}^{3} 1 d \tau=3-(t-2)=5-t$
(b) Plot $y(t)=h(t) * u(t)$ using the signals below, where $h(t)$ is a rectangular pulse and $u(t)$ is the unit step signal. 9 points

Very similar to problem 2.1(b) except that the origin is handled differently when convolving two causal sequences.

Problem 2.3. Discrete-Time First-Order LTI IIR System. 18 points.
Consider a causal discrete-time first-order linear time-invariant (LTI) system with input $x[n]$ and output $y[n]$ governed by the following input-output relationship

$$
y[n]-a y[n-1]=x[n]-b x[n-1]
$$

for real-valued constants a and b where $|a|<1$ and $|b| \geq 1$.
(a) Draw the block diagram for the input-output relationship in the discrete-time domain. 3 points.

Let $n=0: y[0]=a y[-1]+x[0]-b x[-1]$. Initial conditions are $x[-1]$ and

$y[-1]$. System needs to be "at rest" for linearity and time-invariance to hold; hence, initial conditions must be 0 .
(c) Derive the transfer function in the z-domain. 3 points.

Take z-transform of both sides of the difference equation
$y[n]-a y[n-1]=x[n]-b x[n-1]$
$Y(z)-a z^{-1} Y(z)=X(z)-b z^{-1} X(z)$

$Y(z)\left(1-a z^{-1}\right)=X(z)\left(1-b z^{-1}\right)$
$H(z)=\frac{Y(z)}{X(z)}=\frac{1-b z^{-1}}{1-a z^{-1}}$
(d) Give a formula for the frequency response. 3 points.

In the transfer function $H(z)$, the pole is at $z=a$ so the region of convergence is $|z|>|a|$. Since $|a|<1$, the region of convergence includes the unit circle, and the substitution $z=e^{j \omega}$ is valid to convert the z-transform into a discrete-time Fourier transform.
$H\left(\boldsymbol{e}^{j \omega}\right)=\frac{1-\boldsymbol{b} e^{-j \omega}}{1-a e^{-j \omega}}$
Slide $10-9 \& 10-11$
(e) Give values of a and b to notch out a frequency of $0 \mathrm{rad} / \mathrm{sample}$ and pass other frequencies as much as possible. Justify your choices. 6 points.
To remove $0 \mathrm{rad} / \mathrm{sample}$, place a zero at $z=e^{j 0}=1$. So, $b=1$.
Place pole at same angle with radius of 0.9 , so $a=0.9$.

Problem 2.4 Discrete-Time Second-Order LTI System. 24 points.
The transfer function in the z-domain for a causal discrete-time second-order linear time-invariant (LTI) system is given below where $\widehat{\omega}_{0}$ is a constant in units of $\mathrm{rad} / \mathrm{sample}$:

$$
H(z)=\frac{\left(\sin \hat{\omega}_{0}\right) z^{-1}}{1-2\left(\cos \hat{\omega}_{0}\right) z^{-1}+z^{-2}}
$$

(a) How many zeros are in the transfer function and what are their values? 3 points.

$$
H(z)=\frac{\left(\sin \widehat{\omega}_{0}\right) z^{-1}}{1-2\left(\cos \widehat{\omega}_{0}\right) z^{-1}+z^{-2}}=\frac{\left(\sin \widehat{\omega}_{0}\right) z}{z^{2}-2\left(\cos \widehat{\omega}_{0}\right) z+1}
$$

(b) How many poles are in the transfer function and what are their values? 3 points.

The denominator has two roots (poles). Using the quadratic formula,
$\frac{2\left(\cos \widehat{\omega}_{0}\right) \pm \sqrt{4 \cos ^{2} \widehat{\omega}_{0}-4}}{2}=\cos \widehat{\omega}_{0} \pm \sqrt{\cos ^{2} \widehat{\omega}_{0}-1}=\cos \widehat{\omega}_{0} \pm \sqrt{-\sin ^{2} \widehat{\omega}_{0}}$
Slides 11-9 \& 11-10
SPFirst Sec. 8-4
Hence, the poles are at $\cos \widehat{\boldsymbol{\omega}}_{\mathbf{0}} \pm \boldsymbol{j} \sin \widehat{\boldsymbol{\omega}}_{\mathbf{0}}$.
(c) What is the region of convergence? 3 points.

Part of the complex \boldsymbol{z} plane outside a circle whose radius is the
Sides 11-5, 11-6 \& 11-9
SPFirst Sec. 8-3.3 radius of the largest pole; that is, $|z|>\max \left\{\left|p_{0}\right|,\left|p_{1}\right|\right\}$.
(d) Derive the difference equation that relates input $x[n]$ and output $y[n]$ in the discretetime domain. 6 points.

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{b_{1} z^{-1}}{1-a_{1} z^{-1}+z^{-2}}
$$

HW 6.3

Slide 11-9 SPFirst Sec. 8-9

By multiplying both sides by $X(z)$ and also by $1-a_{1} z^{-1}+z^{-2}$,
$Y(z)\left(1-a_{1} z^{-1}+z^{-2}\right)=b_{1} z^{-1} X(z)$
$Y(z)-a_{1} z^{-1} Y(z)+z^{-2} Y(z)=b_{1} z^{-1} X(z)$
By taking the inverse z-transform of both sides
$y[n]-a_{1} y[n-1]+y[n-2]=b_{1} x[n-1]$
$y[n]=2\left(\cos \widehat{\omega}_{0}\right) y[n-1]-y[n-2]+\left(\sin \widehat{\omega}_{0}\right) x[n-1]$
(e) What are the initial conditions? To what values should the initial conditions be set? 3 points.

Let $n=0: y[0]=a_{1} y[-1]-y[-2]+b_{1} x[-1]$. Initial conditions are
$y[-1], y[-2], x[-1]$. They should be set to zero to ensure the system is "at rest" in order for the system to be linear and time-invariant.
(f) Using the input-output relationship in part (d) and the initial conditions in part (e), compute the first three values of the impulse response for $n \geq 0$ to infer its formula. Hint: The impulse response is causal and periodic. 6 points.
To compute the impulse response, set $x[n]=\delta[n]$. $y[0]=2\left(\cos \widehat{\omega}_{0}\right) y[-1]-y[-2]+\left(\sin \widehat{\omega}_{0}\right) x[-1]=0$

Slide 11-3
SPFirst Sec. 8-2
$y[1]=2\left(\cos \widehat{\omega}_{0}\right) y[0]-y[-1]+\left(\sin \widehat{\omega}_{0}\right) x[0]=\sin \widehat{\omega}_{0}$
$y[2]=2\left(\cos \widehat{\omega}_{0}\right) y[1]-y[0]+\left(\sin \widehat{\omega}_{0}\right) x[1]=2\left(\cos \widehat{\omega}_{0}\right)\left(\sin \widehat{\omega}_{0}\right)=\sin 2 \widehat{\omega}_{0}$
Inferring the formula for the impulse response: $h[n]=\left(\sin \widehat{\omega}_{0} n\right) u[n]$

Problem 2.5. Potpourri. 22 points.
(a) Determine whether or not a tapped delay line is bounded-input bounded-output stability.
I. Discrete-time tapped delay line, a.k.a. finite impulse response filter. 6 points.

Bounded-input bounded-output (BIBO) stability means that for every possible input signal that is bounded in amplitude, output is always bounded in amplitude.
The impulse response is a_{n}.
Answer \#1: Let $|x[n]| \leq B_{I}<\infty$, then
$|\boldsymbol{y}[\boldsymbol{n}]|=\left|\sum_{\boldsymbol{M}=\mathbf{M}}^{M-1} \boldsymbol{a}_{\boldsymbol{k}} \boldsymbol{x}[\boldsymbol{n}-\boldsymbol{k}]\right|{ }^{M-1} \quad{ }^{M-1} \quad y[n] \quad y[n]=\sum_{k=0}^{M-1} a_{k} x[n-k]$
$|y[n]| \leq \sum_{k=0}^{M-1}\left|a_{k} x[n-k]\right|=\sum_{k=0}^{M-1}\left|a_{k}\right||x[n-k]| \leq B_{1} \sum_{k=0}^{M-1}\left|a_{k}\right| \leq B_{2}<\infty$

Slide 11-13
Handout H

Answer \#3: Lecture slide 11-12 says that all discrete-time FIR filters are BIBO stable.
II. Continuous-time tapped delay line. 6 points.

Answer \#1: Similar to answer \#1 above.

Let $|x(t)| \leq B_{1}<\infty$, then
$|y(t)|=\left|\sum_{k=0}^{M-1} a_{k} x(t-k T)\right| \leq \sum_{k=0}^{M-1} \mid a_{k} x(t-$ kT)|

$$
=\sum_{k=0}^{M-1}\left|a_{k}\right||x(t-k T)| \leq B_{1} \sum_{k=0}^{M-1}\left|a_{k}\right| \leq B_{2}
$$

Slide 12-14
Slide 13-6
 HW 7.1

HW 7.3c

$$
<\infty
$$

Answer \#2: Yes, impulse response is absolutely integrable.

$$
\begin{aligned}
& \text { Answer \#2: Yes, impulse response is absolutely integrable. } \\
& \int_{-\infty}^{\infty}|\boldsymbol{h}(\boldsymbol{t})| \boldsymbol{d} \boldsymbol{t}=\int_{-\infty}^{\infty}\left|\sum_{\boldsymbol{k}=0}^{M-1} \boldsymbol{a}_{\boldsymbol{k}} \boldsymbol{\delta}(\boldsymbol{t}-\boldsymbol{k} \boldsymbol{t})\right| \boldsymbol{d} \boldsymbol{t} \leq \sum_{\boldsymbol{k}=0}^{M-1}\left|\int_{-\infty}^{\infty} \boldsymbol{a}_{\boldsymbol{k}} \boldsymbol{\delta}(\boldsymbol{t}-\boldsymbol{k} \boldsymbol{t}) \boldsymbol{d} \boldsymbol{t}\right| \leq \sum_{\boldsymbol{k}=0}^{M-1}\left|\boldsymbol{a}_{\boldsymbol{k}}\right|
\end{aligned} \quad y(t)=\sum_{k=0}^{M-1} a_{k} x(t-k T) .
$$

See SPFirst Sec. 9-8.3 (page 274) and Midterm \#1 Spring 2009 Problem 1.3(c).
SPFirst Sec. 9-8.3
(b) Determine the number of coefficients of a discrete-time finite impulse response (FIR) averaging filter that would zero out 60 Hz and its harmonics. Use a sampling rate, f_{s}, of 480 Hz .10 points.
A discrete-time averaging filter is a lowpass filter, and we can use the pattern of zeros in the stopband to remove 60 Hz and most of its harmonics. With L coefficients, the filter would zero out discrete-time frequencies at $\widehat{\omega}_{k}=2 \pi \frac{k}{L}$ for $k=1,2, \ldots, L-1$. Through sampling, $\widehat{\omega}_{k}=2 \pi \frac{k}{L}=2 \pi \frac{f_{k}}{f_{s}}$ which means $f_{k}=\frac{f_{s}}{L} k$ for $k=1,2, \ldots, L-1$. Using $L=8$ gives zeros at the first seven harmonics: $60,120,180,240,300,360$, and 420 Hz . Due to sampling, the actual frequencies are $60,120,180,240,-180,-120$, and -60 Hz . Also, 240 Hz is the same as -240 Hz . Multiples of 480 Hz pass through the filter. The zeros of the echo filter in mini-project \#2 have a similar structure.

