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• The exam is scheduled to last 75 minutes. 
• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets. 
• Calculators are allowed. 
• You may use any standalone computer system, i.e. one that is not connected to a network.  
• Please disable all wireless connections on your calculator(s) and computer system(s). 
• Please turn off all cell phones. 
• No headphones are allowed. 
• All work should be performed on the midterm exam.  If more space is needed, then use 

the backs of the pages. 
• Fully justify your answers.  If you decide to quote text from a source, please give the 

quote, page number and source citation. 
 
 
 

 
Problem Point Value Your score Topic 

1 18  Discrete-Time Convolution 
2 18  Continuous-Time Convolution 
3 18  Discrete-Time First-Order System 
4 24  Discrete-Time Second-Order System 
5 22  Potpourri 

Total 100   
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Problem 2.1 Discrete-Time Convolution.  18 points. 
(a) Plot y[n] = h[n] * x[n] using the rectangular pulse signals below.  9 points. 

 
Convolution formula: 

 
 

Convolving two causal signals gives a causal result.  
Convolving two finite-length signals of lengths Lh and Lx gives a result of length Lh + Lx – 1. 

 
 

(b) Plot y[n] = h[n] * u[n] using the signals below, where h[n] is a rectangular pulse and u[n] is the 
unit step signal. 9 points. 
 
 
 

 
 
 

 
Convolution formula: 

 
Convolving two causal signals gives a causal result. 

 

y n[ ] =  h m[ ]
m=−∞

∞

∑  u n−m[ ] = h[0]u[n]+ h[1]u[n−1]= u[n]+u[n−1]

Convolving two rectangular pulses of 
different lengths gives a trapezoid.  

 

h = [ 0 1 1 0 0]; 
x = [ 0 1 1 1 0]; 
y = conv(h, x); 
n = [-2 -1 0 1 2 3 4 5 6]; 
stem(n, y); 
 

y n[ ] =  h m[ ]
m=−∞

∞

∑  x n−m[ ] = h[0]x[n]+ h[1]x[n−1]= x[n]+ x[n−1]
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HW 4.1 & 4.3(c) 

Slides 7-3 to 7-9; 7-13; 8-8 

SPFirst Sec. 5-2, 5-3 & 5-7 
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Problem 2.2 Continuous-Time Convolution.  18 points. 
(a) Plot y(t) = h(t) * x(t) using the rectangular pulse signals below.  9 points. 

 

 

 
 

Convolution formula: 

Convolving two causal signals gives a causal result.  
Convolving two finite-length signals of lengths Lh and Lx gives a result of length Lh + Lx .    

 

 
 

 

 

 

(b) Plot y(t) = h(t) * u(t) using the signals below, where h(t) is a rectangular pulse and u(t) is the unit 
step signal.  9 points 

 

 
 
  

h t( )∗ x t( ) ≡ x τ( )
−∞

∞

∫ h t −τ( )dτ

1 
0

t
∫ dτ = tFor 0 < t ≤  2:  For 2 < t ≤  3:  1 

t−2

t
∫ dτ = 2 For 2 < t ≤  3:  

1 
t−2

3
∫ dτ = 3− (t − 2) = 5− t

Convolving two rectangular pulses of 
different lengths gives a trapezoid.  

Very similar to problem 2.1(b) except 
that the origin is handled differently 
when convolving two causal sequences.  
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Problem 2.3.  Discrete-Time First-Order LTI IIR System.  18 points. 
Consider a causal discrete-time first-order linear time-invariant (LTI) system with input x[n] and 
output y[n] governed by the following input-output relationship 

y[n] – a y[n-1] = x[n] – b x[n-1]  

for real-valued constants a and b where |a| < 1 and |b| ≥ 1. 
(a) Draw the block diagram for the input-output relationship in the discrete-time domain.  3 points. 

 
(b)  

 
(c)  
(d)  

 

(b) What are the initial conditions? What should their values be? Why? 3 points.  
Let n = 0:  y[0] = a y[-1] + x[0] – b x[-1].  Initial conditions are x[-1] and 
y[-1].  System needs to be “at rest” for linearity and time-invariance to hold; hence, initial 
conditions must be 0. 

(c) Derive the transfer function in the z-domain.  3 points. 
Take z-transform of both sides of the difference equation 
y[n] - a y[n-1] = x[n] – b x[n-1] 
Y(z) - a z-1 Y(z) = X(z) – b z-1 X(z) 
Y(z) (1 - a z-1) = X(z) (1 – b z-1) 
𝑯 𝒛 = 𝒀 𝒛

𝑿(𝒛)
= 𝟏!𝒃𝒛!𝟏

𝟏!𝒂𝒛!𝟏
 

(d) Give a formula for the frequency response.  3 points. 

In the transfer function H(z), the pole is at z = a so the region of convergence is |z| > |a|.  
Since |a| < 1, the region of convergence includes the unit circle, and the substitution 𝒛 = 𝒆𝒋𝝎 
is valid to convert the z-transform into a discrete-time Fourier transform. 
𝑯 𝒆𝒋𝝎 = 𝟏!𝒃𝒆!𝒋𝝎

𝟏!𝒂𝒆!𝒋𝝎
 

(e) Give values of a and b to notch out a frequency of 0 rad/sample and pass 
other frequencies as much as possible.  Justify your choices.  6 points. 
 

To remove 0 rad/sample, place a zero at 𝒛 = 𝒆𝒋𝟎 = 𝟏.  So, b = 1. 
Place pole at same angle with radius of 0.9, so a = 0.9. 

freqz( [1 -1], [1 - 0.9] ); 
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Problem 2.4 Discrete-Time Second-Order LTI System.  24 points. 
The transfer function in the z-domain for a causal discrete-time second-order linear time-invariant 
(LTI) system is given below where 𝜔! is a constant in units of rad/sample: 

H (z) =
sinω̂0( )  z−1

1− 2 cosω̂0( )  z−1 + z−2  

(a) How many zeros are in the transfer function and what are their values?  3 points. 
𝑯 𝒛 = (𝐬𝐢𝐧𝝎𝟎)𝒛!𝟏

𝟏!𝟐 𝐜𝐨𝐬𝝎𝟎 𝒛!𝟏!𝒛!𝟐
= (𝐬𝐢𝐧𝝎𝟎)𝒛

𝒛𝟐!𝟐 𝐜𝐨𝐬𝝎𝟎 𝒛!𝟏
 

The root of the numerator is z = 0.  Hence, there is one zero at z = 0. 

(b) How many poles are in the transfer function and what are their values?  3 points.  

The denominator has two roots (poles).  Using the quadratic formula, 
𝟐 𝐜𝐨𝐬𝝎𝟎 ± 𝟒 𝐜𝐨𝐬𝟐𝝎𝟎!𝟒

!
= 𝐜𝐨𝐬𝝎𝟎 ± 𝐜𝐨𝐬𝟐𝝎𝟎 − 𝟏 = 𝐜𝐨𝐬𝝎𝟎 ± −𝐬𝐢𝐧𝟐𝝎𝟎 

Hence, the poles are at 𝐜𝐨𝐬𝝎𝟎 ± 𝒋 𝐬𝐢𝐧𝝎𝟎. 

(c) What is the region of convergence?  3 points. 
Part of the complex z plane outside a circle whose radius is the 
radius of the largest pole; that is, 𝒛 > 𝐦𝐚𝐱  {|𝒑𝟎|, |𝒑𝟏|}. 

(d) Derive the difference equation that relates input x[n] and output y[n] in the discrete-
time domain.  6 points. 

𝑯 𝒛 =
𝒀(𝒛)
𝑿(𝒛) =

𝒃𝟏𝒛!𝟏

𝟏− 𝒂𝟏𝒛!𝟏 + 𝒛!𝟐
 

By multiplying both sides by X(z) and also by 𝟏− 𝒂𝟏𝒛!𝟏 + 𝒛!𝟐, 
𝒀(𝒛)(𝟏− 𝒂𝟏𝒛!𝟏 + 𝒛!𝟐) = 𝒃𝟏𝒛!𝟏𝑿(𝒛) 
𝒀(𝒛)− 𝒂𝟏𝒛!𝟏𝒀(𝒛)+ 𝒛!𝟐𝒀(𝒛) = 𝒃𝟏𝒛!𝟏𝑿(𝒛) 
By taking the inverse z-transform of both sides 
𝒚[𝒏]− 𝒂𝟏𝒚[𝒏− 𝟏]+ 𝒚[𝒏− 𝟐] = 𝒃𝟏𝒙[𝒏− 𝟏] 
𝒚 𝒏 = 𝟐 𝐜𝐨𝐬𝝎𝟎 𝒚 𝒏− 𝟏 − 𝒚 𝒏− 𝟐 + 𝐬𝐢𝐧𝝎𝟎 𝒙[𝒏− 𝟏] 

(e) What are the initial conditions?  To what values should the initial conditions be set?  3 points. 

Let n = 0: 𝒚 𝟎 = 𝒂𝟏𝒚 −𝟏 − 𝒚 −𝟐 + 𝒃𝟏𝒙[−𝟏].  Initial conditions are 
𝒚 −𝟏 ,𝒚 −𝟐 ,𝒙[−𝟏].  They should be set to zero to ensure the system 
is “at rest” in order for the system to be linear and time-invariant. 

(f) Using the input-output relationship in part (d) and the initial conditions in part 
(e), compute the first three values of the impulse response for n ≥ 0 to infer its formula.  Hint: The 
impulse response is causal and periodic. 6 points. 
   To compute the impulse response, set x[n] = δ[n]. 
𝒚 𝟎 = 𝟐 𝐜𝐨𝐬𝝎𝟎 𝒚 −𝟏 − 𝒚 −𝟐 + 𝐬𝐢𝐧𝝎𝟎 𝒙 −𝟏 = 𝟎 
𝒚 𝟏 = 𝟐 𝐜𝐨𝐬𝝎𝟎 𝒚 𝟎 − 𝒚 −𝟏 + 𝐬𝐢𝐧𝝎𝟎 𝒙 𝟎 = 𝐬𝐢𝐧𝝎𝟎 
𝒚 𝟐 = 𝟐 𝐜𝐨𝐬𝝎𝟎 𝒚 𝟏 − 𝒚 𝟎 + 𝐬𝐢𝐧𝝎𝟎 𝒙 𝟏 = 𝟐 𝐜𝐨𝐬𝝎𝟎 𝐬𝐢𝐧𝝎𝟎 = 𝐬𝐢𝐧𝟐𝝎𝟎 
Inferring the formula for the impulse response:  𝒉 𝒏 = (𝐬𝐢𝐧𝝎𝟎𝒏)𝒖[𝒏]  
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Problem 2.5.  Potpourri.  22 points. 
(a) Determine whether or not a tapped delay line is bounded-input bounded-output stability. 

I. Discrete-time tapped delay line, a.k.a. finite 
impulse response filter.  6 points. 
 

Bounded-input bounded-output (BIBO) 
stability means that for every possible 
input signal that is bounded in amplitude, 
output is always bounded in amplitude. 
 

The impulse response is an. 
 

Answer #1: Let | x[n] | ≤  B1 < ∞ , then 
𝒚 𝒏 = 𝒂𝒌𝒙 𝒏− 𝒌𝑴!𝟏

𝒌!𝟎  

𝒚 𝒏 ≤ 𝒂𝒌𝒙 𝒏− 𝒌
𝑴!𝟏

𝒌!𝟎

= 𝒂𝒌 𝒙 𝒏− 𝒌 ≤ 𝑩𝟏 𝒂𝒌 ≤ 𝑩𝟐

𝑴!𝟏

𝒌!𝟎

𝑴!𝟏

𝒌!𝟎

< ∞ 

Answer #2:  Yes.  Impulse response is absolutely summable:  𝒂𝒌 ≤ 𝑩𝟑𝑴!𝟏
𝒌!𝟎 < ∞ 

 

Answer #3: Lecture slide 11-12 says that all discrete-time FIR filters are BIBO stable. 
 

II. Continuous-time tapped delay line.  6 points. 
 

Answer #1:  Similar to answer #1 above. 
Let | x(t) | ≤  B1 < ∞ , then 
𝒚(𝒕) = 𝒂𝒌𝒙(𝒕− 𝒌𝑻)𝑴!𝟏

𝒌!𝟎 ≤ 𝒂𝒌𝒙(𝒕−𝑴!𝟏
𝒌!𝟎

𝒌𝑻)  

          = 𝒂𝒌 𝒙(𝒕− 𝒌𝑻) ≤ 𝑩𝟏 𝒂𝒌 ≤ 𝑩𝟐

𝑴!𝟏

𝒌!𝟎

𝑴!𝟏

𝒌!𝟎
< ∞ 

Answer #2:  Yes, impulse response is absolutely integrable. 

𝒉(𝒕) 𝒅𝒕 =
!

!!
𝒂𝒌𝜹(𝒕− 𝒌𝒕)

𝑴!𝟏

𝒌!𝟎

𝒅𝒕 ≤ 𝒂𝒌𝜹(𝒕− 𝒌𝒕)𝒅𝒕
!

!!

𝑴!𝟏

𝒌!𝟎

!

!!
≤ 𝒂𝒌

𝑴!𝟏

𝒌!𝟎

 

See SPFirst Sec. 9-8.3 (page 274) and Midterm #1 Spring 2009 Problem 1.3(c). 
 

(b) Determine the number of coefficients of a discrete-time finite impulse response (FIR) averaging 
filter that would zero out 60 Hz and its harmonics. Use a sampling rate, fs, of 480 Hz.  10 points. 
 

A discrete-time averaging filter is a lowpass filter, and we can use the pattern of zeros in the 
stopband to remove 60 Hz and most of its harmonics. With L coefficients, the filter would 
zero out discrete-time frequencies at 𝝎𝒌 = 𝟐𝝅 𝒌

𝑳
 for k = 1, 2, …, L-1. Through sampling, 

𝝎𝒌 = 𝟐𝝅 𝒌
𝑳
= 𝟐𝝅 𝒇𝒌

𝒇𝒔
 which means 𝒇𝒌 =

𝒇𝒔
𝑳
𝒌 for k = 1, 2, …, L-1. Using L = 8 gives zeros at the 

first seven harmonics: 60, 120, 180, 240, 300, 360, and 420 Hz.  Due to sampling, the actual 
frequencies are 60, 120, 180, 240, -180, -120, and -60 Hz.  Also, 240 Hz is the same as -240 Hz. 
Multiples of 480 Hz pass through the filter. The zeros of the echo filter in mini-project #2 have 
a similar structure.  

y[n]=  ak  x[n− k]
k=0

M−1

∑

y(t) =  ak  x(t − kT )
k=0

M−1

∑
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