Tune-Up Tuesday for September 11, 2018

(a) Copy, paste and run the Matlab code from slide 1-14 to generate the cosine signal $x(t)=$ $\cos \left(2 \pi f_{0} t\right)$ with $f_{0}=440 \mathrm{~Hz}$ and play it as an audio signal for 3 seconds at the sampling rate of $f_{\mathrm{s}}=8000 \mathrm{~Hz}$:

```
% (a) 'A' note on Western scale in fourth octave (A4) @ 440 Hz
% See https://en.wikipedia.org/wiki/Piano_key_frequencies
f0 = 440; % note 'A4'
fs = 8000; % sampling rate
Ts = 1/fs; % sampling time
t = 0 : Ts : 3; % 3 seconds
x = cos(2*pi*f0*t);
```

(b) Add to the code in (a) to generate a new signal $y(t)=\cos \left(2 \pi f_{0} t\right) \cos \left(2 \pi f_{1} t\right)$ with $f_{1}=$ 110 Hz by using the same sampling rate of $f_{\mathrm{s}}=8000 \mathrm{~Hz}$.
\% (b) Multiply cosine @ 440 Hz and cosine @ 110 Hz \% Modified the code from the left side of lecture slide 3-3.
f1 = 110;
$x 1=\cos (2 * p i * f 1 * t)$;
$\mathbf{y}=\mathbf{x} .{ }^{*} \mathbf{x}$;
(c) Add to the code in (b) to playing $y(t)$ as an audio signal.
\% (c) Play $y(t)$ at sampling (playback) rate of 8000 Hz .
\% I hear two notes/tones.
\% The product can be written as a sum of two cosines.
\% Using the result from lecture slide 3-2,
$\% \quad y(t)=0.5 \cos (2 \mathrm{pi} 330 \mathrm{t})+0.5 \cos (2 \mathrm{pi} 550 \mathrm{t})$
\% Tones at $330 \mathrm{~Hz}(\mathrm{E} 4)$ and 550 Hz (C\#5) are harmonics of 110 Hz
\% See https://en.wikipedia.org/wiki/Piano_key_frequencies sound (y, fs);
(d) Copy and paste your code for (c) into the Tune-up Tuesday \#2 page on Canvas.
\% Although not asked, we plot one period of $y(t)$ in Matlab.
\% Modified the code from the right side of lecture slide 3-3
\% The product of two sinusoids produces frequencies $f 0+f 1$ and $f 0-f 1$
ffund $=\operatorname{gcd}(f 0+f 1, f 0-f 1)$;
Tfund $=1 /$ ffund;
$\mathrm{n}=$ round (Tfund / Ts); \quad \% Tfund / Ts isn't an integer.
plot($t(1: n), y(1: n)$) ;

