Tune-Up Tuesday for October 16, 2018
In the time domain, the output (response) of a linear time-invariant (LTI) system is the convolution of the input signal and the impulse response of the LTI system.
(a) Define an impulse response $h[n]$ of an averaging filter of 10 coefficients.
$\mathrm{h}=(1 / 10) * \operatorname{ones}(1,10)$;
(b) Define $x[n]$ to be a causal rectangular pulse of 5 samples each with value of $1 / 5$.
$\mathrm{x}=(1 / 5) *$ ones $(1,5)$;
(c) Define $y[n]$ to be the output of the average filter given the input $x[n]$ in (b):

```
y = conv(h, x);
```

(d) Plot $y[n]$. What is the shape of $y[n]$?
$\mathrm{n}=0$: length (y) - 1;
figure;
stem(n, y);
\% Trapezoid
(e) How many samples are in $y[n]$?
length (y) \% 14 samples
(f) Let Nh and Nx be the numbers of samples in $h[n]$ and $x[n]$, respectively. How does the answer relate to the answer to (e)?
$\% \mathrm{Nh}+\mathrm{Nx}-1$
\% This can be computed
(g) Homogeneity. Scale $x[n]$ in (b) by -1 . How does the filter response change?

```
yscaled = conv(h, -x);
n = 0 : length(yscaled)-1;
figure;
stem(n, yscaled);
% Filter response is negated
```

(h) Time Invariance. Delay $x[n]$ in (b) by 3 samples. How does the filter response change?

```
xshifted = [ 0 0 0 x ];
yshifted = conv(h, xshifted);
n = 0 : length(yshifted)-1;
figure;
stem(n, yshifted);
% Filter response is y[n] delayed by three samples
```

(i) All-Zero Input. Let $x[n]$ be 0 for 5 samples. What is the response (output) of the filter?

```
xzeros = zeros(1, 5);
yzeros = conv(h, xzeros);
n = 0 : length(yzeros)-1;
figure;
stem(n, yzeros);
% Filter response is zero for all samples
```

Please submit your MATLAB code for parts (a)-(d) and (g)-(i) and your answers to the questions in (e)-(i) as comments in your MATLAB code. See next page for the code.

```
% Tune-Up Tuesday #6, Oct. 16, 2018
% Programmer: Prof. Brian L. Evans
% The University of Texas at Austin
%
% Parts (a) - (d)
h = (1/10)*ones(1, 10);
x = (1/5)*ones(1, 5);
y = conv(h, x);
n = 0 : length(y) - 1;
figure;
stem(n, y); % looks like a trapezoid
% (e)
length(y) % 14
% (f) Nh + Nx - 1
% (g)
yscaled = conv(h, -x);
n = 0 : length(yscaled)-1;
figure;
stem(n, yscaled);
% Filter response is negated
% (h)
xshifted = [ 0 0 0 x ];
yshifted = conv(h, xshifted);
n = 0 : length(yshifted)-1;
figure;
stem(n, yshifted);
% Filter response is y[n] delayed by three
% (i) All zero input
xzeros = zeros(1, 5);
yzeros = conv(h, xzeros);
n = 0 : length(yzeros) - 1;
figure;
stem(n, yzeros);
% Filter response is zero for all samples
```

