% Tune-Up Tuesday #7 for October 23,2018

% Play x[n], which is an 800 Hz tone for 3s at a sampling rate of 8000 Hz:

fs = 8000;

Ts = 1/fs;

t =0 : Ts : 3;

f0 = 800;

X = cos(2*pi*f0*t);

sound(x, fs); % please use the sound command for tune-up

pause (3) ;

oe

Discrete-time frequency for the cosine is
w0 = 2*pi*f0/fs = 2*pi*800/8000 = 0.2*pi

oe

% (a) Define an impulse response h[n] of an averaging filter of 10 coefficients.
h10 = (1/10)*ones (1, 10);

0 —

50 't

8
T

% (b) Plot its magnitude/phase response

150 [

R
g

fregz (h10); % not shown

Magnitude (dB)
& .
8
-

| x:800 X: 1600 X:2400 X:3200
| Y:-328.1 Y:-330.9 Y:-325 Y:-330.6

% (c) At what frequencies (in Hz) does the L . . a .

&
8

L L L L
0 500 1000 1500 2000 2500 3000 3500

magnitude response equal zero? Froquency (H2)

% Hint: You can use the data cursor tool in the
freqz plot window.

oe

For 1 Hz accuracy in fregz and
% horizontal axis in Hz, use

Phase (degrees)
- o
g

freqgz (h10, 1, fs, fs); % plot on right 205 w0 wm B Hm B0 @0 B

Frequency (Hz)

% 800, 1600, 2400, 3200, 4000 Hz
% -800, -1600, -2400, -3200 Hz

% Are the frequencies harmonically related?

oe

Yes, over frequencies captured via sampling at sampling rate fs,
i.e. -fs/2 to fs/2, integer multiples are 800 Hz have been
% zeroed out except 0 Hz.

% Can you give a formula for the frequencies in terms for an N-point averaging filter?

oe

% fs/N, 2*fs/N, 3*fs/N, etc.
% -fs/N, -2*fs/N, -3*fs/N, etc.

% (d) Filter x[n] using the averaging filter h[n] and play the result:

yl0 = filter (hl0, 1, x);
sound (yl10, fs);
pause (3) ;

% Playback is silent because the filter filters out (rejects)
% the frequency of the input sinusoid (800 Hz). See Epilog.

% (e) Filter x[n] using a five-point averaging filter and play the result

h5 = (1/5) *ones (1, 5);
y5 = filter (h5, 1, x);
sound (y5, fs);
pause (3) ;

fregz (h5, 1, fs, fs);

4000

oe

From the freqgz plot, the filter reduces amplitude of the cosine at
800 Hz (0.2pi) by about -3.7 dB. AdB = 20 logl0 A = -3.7 dB, which
% means that A = 107°(-3.7/20) = 0.653. See Epilog.

oe

% (f) Filter x[n] using a 15-point averaging filter and play the result
hl5 = (1/15)*ones (1, 15);

yl5 = filter (hl5, 1, x);

sound(yl5, fs);

pause (3) ;

freqgz (hl5) ;

% From the freqgz plot, the filter reduces amplitude of the cosine at
% 800 Hz (0.2pi) by about -13.37 dB, which is a gain of 0.2145. See Epilog.

% (g) Filter x[n] using a 20-point averaging filter and play the result
h20 = (1/20)*ones (1, 20);

y20 = filter (h20, 1, x);

sound(y20, fs);

pause (3) ;

fregz (h20);

% Playback is silent because the averaging filter filters out (rejects)
% the frequency of the input sinusoid (800 Hz). See Epilog.

% Epilog. Here we superimpose the magnitude responses for the four averaging
% filters: 5-point (blue), 10-point (red), 15-point (yellow), and 20-point (purple).
% The data cursor indicates the magnitude response at 0.2*pi (i.e. 800 Hz).

% Lowpass filter: passes low frequencies and attenuates high frequencies.

1

osf it
osf ||}
o7f |
ost |
osF |
04r |
03t |
ozf LiAY® \ 7

|
01f |

0 y
0 0a

05 06 07 08 09 1
frequency x pi

fs = 8000;

for N = [5 10 15 20]
coeffs = (1/N)*ones(l, N)
[H, W] = freqz(coeffs, 1, fs);
plot(W/pi, abs(H));
hold on;

end

xlabel (' frequency x pi');

~e

% N-point averaging filter: (a) extent in positive frequencies that have magnitude
% response in linear units close to 1 is proportional to 2*pi/N, and (b) zeros out
% discrete-time frequencies that are multiples of 2*pi/N but not multiples of 2*pi.

