\% Tune-Up Tuesday \#7 for October 23, 2018
$\%$ Play $x[n]$, which is an 800 Hz tone for 3 s at a sampling rate of 8000 Hz :

```
fs = 8000;
Ts = 1/fs;
t = 0 : Ts : 3;
f0 = 800;
x = cos(2*pi*f0*t);
sound(x, fs); % please use the sound command for tune-up
pause(3);
% Discrete-time frequency for the cosine is
% w0 = 2*pi*f0/fs = 2*pi*800/8000 = 0.2*pi
```

\% (a) Define an impulse response $h[n]$ of an averaging filter of 10 coefficients.

```
h10 = (1/10)*ones(1, 10);
```

\% (b) Plot its magnitude/phase response

```
freqz(h10); % not shown
```

\% (c) At what frequencies (in Hz) does the magnitude response equal zero?

\% Hint: You can use the data cursor tool in the freqz plot window.

```
% For 1 Hz accuracy in freqz and
% horizontal axis in Hz, use
freqz(h10, 1, fs, fs); % plot on right
% 800, 1600, 2400, 3200, 4000 Hz
% -800, -1600, -2400, -3200 Hz
```


\% Are the frequencies harmonically related?

```
% Yes, over frequencies captured via sampling at sampling rate fs,
% i.e. -fs/2 to fs/2, integer multiples are 800 Hz have been
% zeroed out except 0 Hz.
```

\% Can you give a formula for the frequencies in terms for an N-point averaging filter?
\% fs/N, 2*fs/N, $3 * f s / N$, etc.
\% -fs/N, -2*fs/N, -3*fs/N, etc.
$\%$ (d) Filter $x[n]$ using the averaging filter $h[n]$ and play the result:

```
y10 = filter(h10, 1, x);
sound(y10, fs);
pause(3);
% Playback is silent because the filter filters out (rejects)
% the frequency of the input sinusoid (800 Hz). See Epilog.
```

$\%$ (e) Filter $x[n]$ using a five-point averaging filter and play the result

```
h5 = (1/5)*ones(1, 5);
y5 = filter(h5, 1, x);
sound(y5, fs);
pause(3);
freqz(h5, 1, fs, fs);
```

```
% From the freqz plot, the filter reduces amplitude of the cosine at
% 800 Hz (0.2pi) by about -3.7 dB. AdB = 20 log10 A = -3.7 dB, which
% means that }A=1\mp@subsup{0}{}{\wedge}(-3.7/20)=0.653. See Epilog
```

\% (f) Filter $x[n]$ using a 15-point averaging filter and play the result

```
h15 = (1/15)*ones (1, 15);
```

y15 = filter(h15, 1, x);
sound (y15, fs);
pause (3) ;
freqz (h15);
\% From the freqz plot, the filter reduces amplitude of the cosine at
\% 800 Hz (0.2pi) by about -13.37 dB , which is a gain of 0.2145 . See Epilog.
$\%(\mathrm{~g})$ Filter $x[n]$ using a 20-point averaging filter and play the result

```
h20 = (1/20)*ones(1, 20);
```

y20 = filter(h20, 1, x);
sound (y20, fs);
pause (3);
freqz (h20);
\% Playback is silent because the averaging filter filters out (rejects)
\% the frequency of the input sinusoid (800 Hz). See Epilog.
\% Epilog. Here we superimpose the magnitude responses for the four averaging \% filters: 5-point (blue), 10-point (red), 15-point (yellow), and 20-point (purple). $\%$ The data cursor indicates the magnitude response at 0.2^{*} pi (i.e. 800 Hz). \% Lowpass filter: passes low frequencies and attenuates high frequencies.


```
fs = 8000;
```

for $N=\left[\begin{array}{llll}5 & 10 & 15 & 20\end{array}\right]$
coeffs $=(1 / \mathrm{N})$ *ones $(1, \mathrm{~N})$;
[H, W] = freqz(coeffs, 1, fs);
plot(W/pi, abs(H));
hold on;
end
xlabel('frequency x pi');
$\% N$-point averaging filter: (a) extent in positive frequencies that have magnitude $\%$ response in linear units close to 1 is proportional to $2^{*} \mathrm{pi} / N$, and (b) zeros out $\%$ discrete-time frequencies that are multiples of $2^{*} \mathrm{pi} / \mathrm{N}$ but not multiples of $2^{*} \mathrm{pi}$.

