
%	Tune-Up	Tuesday	#7	for	October	23,	2018	

%	Play	x[n],	which	is	an	800	Hz	tone	for	3s	at	a	sampling	rate	of	8000	Hz:	
fs = 8000;
Ts = 1/fs;
t = 0 : Ts : 3;
f0 = 800;
x = cos(2*pi*f0*t);
sound(x, fs); % please use the sound command for tune-up
pause(3);

% Discrete-time frequency for the cosine is
% w0 = 2*pi*f0/fs = 2*pi*800/8000 = 0.2*pi

%	(a)	Define	an	impulse	response	h[n]	of	an	averaging	filter	of	10	coefficients.	
h10 = (1/10)*ones(1, 10);

%	(b)	Plot	its	magnitude/phase	response	
freqz(h10); % not shown

%	(c)	At	what	frequencies	(in	Hz)	does	the	
magnitude	response	equal	zero?	
%	Hint:		You	can	use	the	data	cursor	tool	in	the	
freqz	plot	window.	
% For 1 Hz accuracy in freqz and
% horizontal axis in Hz, use

freqz(h10, 1, fs, fs); % plot on right

% 800, 1600, 2400, 3200, 4000 Hz
% -800, -1600, -2400, -3200 Hz

%	Are	the	frequencies	harmonically	related?	
% Yes, over frequencies captured via sampling at sampling rate fs,
% i.e. –fs/2 to fs/2, integer multiples are 800 Hz have been
% zeroed out except 0 Hz.

%	Can	you	give	a	formula	for	the	frequencies	in	terms	for	an	N-point	averaging	filter?	
% fs/N, 2*fs/N, 3*fs/N, etc.
% -fs/N, -2*fs/N, -3*fs/N, etc.

%	(d)	Filter	x[n]	using	the	averaging	filter	h[n]	and	play	the	result:	
y10 = filter(h10, 1, x);
sound(y10, fs);
pause(3);

% Playback is silent because the filter filters out (rejects)
% the frequency of the input sinusoid (800 Hz). See Epilog.

%	(e)	Filter	x[n]	using	a	five-point	averaging	filter	and	play	the	result	
h5 = (1/5)*ones(1, 5);
y5 = filter(h5, 1, x);
sound(y5, fs);
pause(3);
freqz(h5, 1, fs, fs);

% From the freqz plot, the filter reduces amplitude of the cosine at
% 800 Hz (0.2pi) by about -3.7 dB. AdB = 20 log10 A = -3.7 dB, which
% means that A = 10^(-3.7/20) = 0.653. See Epilog.

%	(f)	Filter	x[n]	using	a	15-point	averaging	filter	and	play	the	result	
h15 = (1/15)*ones(1, 15);
y15 = filter(h15, 1, x);
sound(y15, fs);
pause(3);
freqz(h15);

% From the freqz plot, the filter reduces amplitude of the cosine at
% 800 Hz (0.2pi) by about -13.37 dB, which is a gain of 0.2145. See Epilog.

%	(g)	Filter	x[n]	using	a	20-point	averaging	filter	and	play	the	result	
h20 = (1/20)*ones(1, 20);
y20 = filter(h20, 1, x);
sound(y20, fs);
pause(3);
freqz(h20);

% Playback is silent because the averaging filter filters out (rejects)
% the frequency of the input sinusoid (800 Hz). See Epilog.

%	Epilog.		Here	we	superimpose	the	magnitude	responses	for	the	four	averaging	
%	filters:	5-point	(blue),	10-point	(red),	15-point	(yellow),	and	20-point	(purple).	
%	The	data	cursor	indicates	the	magnitude	response	at	0.2*pi	(i.e.	800	Hz).	
%	Lowpass	filter:	passes	low	frequencies	and	attenuates	high	frequencies.	

	
fs = 8000;
for N = [5 10 15 20]
 coeffs = (1/N)*ones(1, N);
 [H, W] = freqz(coeffs, 1, fs);
 plot(W/pi, abs(H));
 hold on;
end
xlabel('frequency x pi');

%	N-point	averaging	filter:		(a)	extent	in	positive	frequencies	that	have	magnitude	
%	response	in	linear	units	close	to	1	is	proportional	to	2*pi/N,	and	(b)	zeros	out	
%	discrete-time	frequencies	that	are	multiples	of	2*pi/N	but	not	multiples	of	2*pi.	

