Tune-Up Tuesday for September 14, 2021

\% This problem uses Fourier series to synthesize a periodic waveform $\%$ one term at a time. The problem revisits homework problem 2.4(a).
\% (a) Use the Matlab code below that generates a cosine signal $\% \mathrm{x} 0(\mathrm{t})=0.5 * \cos (2 \mathrm{pi} 0 \mathrm{t})$ with $\mathrm{f} 0=440 \mathrm{~Hz}$ for 3 seconds at $\%$ a sampling rate of $\mathrm{fs}=48000 \mathrm{~Hz}$ and play it as a note.
$\%$ The gain of 0.5 is to prevent clipping when using the sound command.

```
fs = 48000; % sampling rate
Ts = 1/fs; % sampling time
tmax = 3; % 3 sec
t = 0 : Ts : tmax;
f0 = 440;
x0 = 0.5* cos(2*pi*f0*t);
sound(x0, fs);
pause(tmax+1);
```

$\%(\mathrm{~b})$ create $\mathrm{y}(\mathrm{t})=|\mathrm{x} 0(\mathrm{t})|$ and play $\mathrm{y}(\mathrm{t})$ as sound.
\% Describe the difference in the sound in (b) vs. the sound in (a). \% Answer: The sound in (b) has a higher pitch (frequency) than the $\%$ sound in (a). Per part (c), the principal frequency in the sound in (b)
$\%$ is twice the principal frequency of the sound in (a), i.e one octave higher.
$y=a b s(x 0)$;
sound (y, fs);
pause (tmax+1);
$\%(c) \operatorname{plot} y(t)$ for 5 periods of $x 0(t)$.
\% How many periods of $y(t)$ are there?
$\%$ Answer: 10 periods of $y(t)$ in the same duration of 5 periods of $x 0(t)$.
$\%$ The fundamental period of $y(t)$ is half that of $x 0(t)$ and hence the
$\%$ the fundamental frequency of $y(t)$ is twice that of $x 0(t)$.
t5periods = 5/f0;
n5periods $=$ round (t5periods/Ts);
figure;
plot(t(1:n5periods), y(1:n5periods));
\% (d) using Fourier series synthesis, use an increasing number $\%$ of terms $N=1,2,3,4,5$, and play each synthesized sound.
\% The Fourier series coefficient formulas from homework \% problem 2.4(a) are the following after accounting for the $\%$ gain of 0.5: A0 = $1 / \mathrm{pi}$ and $\mathrm{Ak}=\cos (\mathrm{pi} k) /\left(\mathrm{pi}\left(1-4^{*} \mathrm{k}^{\wedge} 2\right)\right)$. $\%$ Comment: The values of Ak decay in absolute value at a $\%$ rate of $1 / k^{\wedge} 2$. We won't need many terms for the synthesized $\%$ sound to match the sound in (b).

```
% Create an array to hold the synthesized sound for efficiency
numSamples = length(t);
synthSound = zeros(1, numSamples);
```

```
% Add the first term
A0 = 1/pi;
synthSound = synthSound + A0*ones(1, numSamples);
f0y = 2*f0;
for k = 1:5
    % Add in terms for +k and -k
    Ak = cos(pi*k) / ( pi*(1 - 4*k^2) );
    fk = k * fOy;
    synthSound = synthSound + Ak*exp(j*2*pi*fk*t);
    kneg = -k;
    Akneg = cos(pi*kneg) / ( pi*(1 - 4*kneg^2) );
    fkneg = kneg * f0y;
    synthSound = synthSound + Akneg*exp(j*2*pi*fkneg*t);
    sound(synthSound, fs);
    pause(tmax+1);
end
```

Although not asked, here's a plot of a cosine at 440 Hz and its absolute value to show that the fundamental period for the absolute value is half of the period for the cosine at 440 Hz ; in other words, the fundamental frequency doubles.

Although not asked, here's a plot of the Ak coefficients as a function of k . In this case, the values of Ak are real-valued and even symmetric.

```
k = -10 : 10;
Ak = cos(pi*k)./ ( pi*(1 - 4*k.^2) );
stem(k, Ak);
```


