Tune-Up Tuesday \#5 for October 14, 2021

The tuneup is to solve homework problem 5.3(b) and verify the solution.
Intro. A step function $u[n]$ is a function that turns "on" at the origin and stays on, as plotted on the right. Mathematically,

$$
u[n]=\left[\begin{array}{ll}
1 & n \geq 0 \\
0 & n<0
\end{array}\right.
$$

Problem. A linear time-invariant (LTI) system gives the output plotted on the right when the input is $x_{1}[n]=u[n]$. The output, also called the step response, is

$$
y_{1}[n]=\delta[n]+2 \delta[n-1]-\delta[n-2]
$$

We'll model the unknown LTI system as a finite impulse
 response (FIR) filter with input signal $x[n]$ and output signal

$$
y[n]=h[0] x[n]+h[1] x[n-1]+h[2] x[n-2]+h[N-1] x[n-(N-1)]
$$

From this information, compute the filter coefficients $h[n]$ for $n=0,1, \ldots, N-1$ and manually verify that the step response of the FIR filter is $y_{1}[n]$.

Deconvolution. We'll use deconvolution to compute the filter coefficients. We derive the time-domain deconvolution algorithm by evaluating the output at $n=0$:

$$
y[0]=b_{0} x[0]+b_{1} x[-1]+b_{2} x[-2]+\cdots+b_{N-1} x[-(N-1)]
$$

For LTI systems, it is a necessary (but not sufficient) condition for the system to be "at rest", which means that all initial conditions $x[-1], x[-2], \ldots, x[-(N-1)]$ must be zero. Since we know $x[n]$ and $y[n]$, we have one equation and one unknown at $n=0$:

$$
y[0]=b_{0} x[0]
$$

and we can compute

$$
b_{0}=\frac{y[0]}{x[0]}
$$

For this calculation to be valid, the first value of the test signal, $x[0]$, cannot be zero.
The second output value is: $y[1]=b_{0} x[1]+b_{1} x[0]$, and therefore, $b_{1}=\frac{\mathrm{y}[1]-b_{0} x[1]}{x[0]}$.
The third output value is: $y[2]=b_{0} x[2]+b_{1} x[1]+b_{2} x[0]$ and $b_{2}=\frac{y[2]-b_{0} x[2]-b_{1} x[1]}{x[0]}$.
In general, $b_{N}=\frac{y[N]-\sum_{i=0}^{N-1} b_{i} x[N-i]}{x[0]}$.
The MATLAB script utdeconvolve.m implements this algorithm.
Part (a). Give the vectors for x and y that you used when running utdeconvolve.m and the filter coefficients in vector b that the code computes.

\mathbf{x}	\mathbf{y}	\mathbf{b}
$\left[\begin{array}{llllll}1 & 1 & 1\end{array}\right]$	$\left[\begin{array}{llll}1 & 2 & -1\end{array}\right]$	$\left[\begin{array}{llll}1 & 1 & -3\end{array}\right]$
$\left[\begin{array}{lllll}1 & 1 & 1 & 1\end{array}\right]$	$\left[\begin{array}{llll}1 & 2 & -1 & 0\end{array}\right]$	$\left[\begin{array}{llll}1 & 1 & -3 & 1\end{array}\right]$
$\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}\right]$	$\left[\begin{array}{lllll}1 & 2 & -1 & 0 & 0\end{array}\right]$	$\left[\begin{array}{lllll}1 & 1 & -3 & 1 & 0\end{array}\right]$
$\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$	$\left[\begin{array}{lllll}1 & 2 & -1 & 0 & 0\end{array}\right]$	$\left[\begin{array}{llll}1 & 1 & -3 & 1\end{array}\right.$

Part (b). Verify that the filter coefficients by using them in the difference equation for the LTI FIR filter

$$
y[n]=h[0] x[n]+h[1] x[n-1]+h[2] x[n-2]+h[N-1] x[n-(N-1)]
$$

given that the input signal is $u[n]$ and the output signal is $y_{1}[n]$

$$
y_{1}[n]=u[n]+u[n-1]-3 u[n-2]+u[n-3]
$$

This is a closed-form solution for $y_{1}[n]$ which gives the correct output values for $y_{1}[n]$ for all n. For $n \geq 0$, the values are [$12-1000 \ldots$...].

Alternate solution for part (b). One could simply compute several values of $y[n]$:

$$
\begin{gathered}
y[n]=x[n]+x[n-1]-3 x[n-2]+x[n-3] \\
y[0]=x[0]+x[-1]-3 x[-2]+x[-3]=1+0+3 \cdot 0+0=1 \\
y[1]=x[1]+x[0]-3 x[-1]+x[-2]=1+1-3 \cdot 0+0=2 \\
y[2]=x[2]+x[1]-3 x[0]+x[-1]=1+1-3 \cdot 1+0=-1 \\
y[3]=x[3]+x[2]-3 x[1]+x[0]=1+1-3 \cdot 1+1=0 \\
y[4]=x[4]+x[3]-3 x[2]+x[1]=1+1-3 \cdot 1+1=0
\end{gathered}
$$

and so forth.

