Warm-up problem. Compute the inverse continuous-time Fourier transform of

$$X(j\omega) = \frac{1}{2+j\omega}$$

Solution: This is the first entry in the table of Fourier transform pairs on page 338:

$$x(t) = e^{-a t} u(t)$$
 for $a > 0 \iff X(j\omega) = \frac{1}{a + j\omega}$

Hence, the inverse continuous-time Fourier transform for

$$X(j\omega) = \frac{1}{2+j\omega}$$

is

 $x(t) = e^{-2t} u(t)$

Homework Problem 9.1(a)-(c) which *Signal Processing First* P-11.8(a)-(c) on page 343:

"In the following, the Fourier transform $X(j \ \omega)$ is given. Using the tables of Fourier transforms [page 338] and Fourier transform properties [page 339] to determine the inverse Fourier transform for each case. You may give your answer either as an equation or a carefully labeled plot, whichever is most convenient."

Solution:

Part	$X(j\omega)$	Rewrite $X(j\omega)$	Notes	x(t)
(a)	$e^{-j\omega 3}$	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} a^{-i\omega_3} \end{pmatrix}$	Delay by 3s the	
	$\overline{2+i\omega}$	$\left(\frac{1}{2+j\omega}\right) \left(\frac{e^{-j\omega}}{\omega}\right)$	result of	$e^{-2(t-3)}u(t-3)$
		delay by 3 in time domain	$F^{-1}\left\{\frac{1}{2+j\omega}\right\}$	
(b)	jω	$\begin{pmatrix} 1 \end{pmatrix}$ (iv)	Differentiate	$d_{\left(a^{-2}t,a(t)\right)}$
	$\overline{2+j\omega}$	$\left(\frac{1}{2+j\omega}\right)$	with respect to <i>t</i>	$\frac{1}{dt} \{e^{-t} u(t)\} =$
	-	differentiate	the result of	$e^{-2t} \delta(t) - 2 e^{-2t} u(t)$
			$F^{-1}\left\{\frac{1}{2+j\omega}\right\}$	
(c)	$(j\omega)$	$\begin{pmatrix} 1 \end{pmatrix}$ $(i \downarrow) (a^{-i\omega_3})$	Differentiate	We can delay the
	$\frac{1}{2+j\omega}e^{-j\omega z}$	$\left(\frac{1}{2+j\omega}\right)(\omega)(e^{-j\omega})$	with respect to t	above result by 3s:
	-		the result of	
			$F^{-1}\left\{\frac{1}{2+j\omega}\right\}$	$e^{-2(t-3)} \delta(t-3) - 2e^{-2(t-3)} \omega(t-2)$
			and then delay	$2e^{-u(l-3)}$
			by 3s	