Tune-Up Tuesday \#9 Inverse Continuous-Time Fourier Transforms (Nov. 30, 2021)

Warm-up problem. Compute the inverse continuous-time Fourier transform of

$$
X(j \omega)=\frac{1}{2+j \omega}
$$

Solution: This is the first entry in the table of Fourier transform pairs on page 338:

$$
x(t)=e^{-a t} u(t) \text { for } a>0 \leftrightarrow X(j \omega)=\frac{1}{a+j \omega}
$$

Hence, the inverse continuous-time Fourier transform for

$$
X(j \omega)=\frac{1}{2+j \omega}
$$

is

$$
x(t)=e^{-2 t} u(t)
$$

Homework Problem 9.1(a)-(c) which Signal Processing First P-11.8(a)-(c) on page 343:
"In the following, the Fourier transform $X(j \omega)$ is given. Using the tables of Fourier transforms [page 338] and Fourier transform properties [page 339] to determine the inverse Fourier transform for each case. You may give your answer either as an equation or a carefully labeled plot, whichever is most convenient."

Solution:

Part	$X(j \omega)$	Rewrite $X(j \omega)$	Notes	$x(t)$
(a)	$\frac{e^{-j \omega 3}}{2+j \omega}$	$\left(\frac{1}{2+j \omega}\right) \underbrace{\left(e^{-j \omega 3}\right)}_{$ delay by 3in time domain $}$	Delay by 3s the result of $F^{-1}\left\{\frac{1}{2+j \omega}\right\}$	$e^{-2(t-3)} u(t-3)$
(b)	$\frac{j \omega}{2+j \omega}$	$\left(\frac{1}{2+j \omega}\right) \underbrace{(j \omega)}_{\text {differentiate }}$	Differentiate with respect to t the result of $F^{-1}\left\{\frac{1}{2+j \omega}\right\}$	$\frac{d}{d t}\left\{e^{-2 t} u(t)\right\}=$
(c)	$\frac{(j \omega)}{2+j \omega} e^{-j \omega 3}$	$\left(\frac{1}{2+j \omega}\right)(j \omega)\left(e^{-j \omega 3}\right)$	Differentiate with respect to t the result of $-2 t$ (We can delay the above result by 3s:

