Tune-Up Tuesday for September 5, 2023

\% Copy this file into a Matlab script window, add your code and answers to the \% questions as Matlab comments, hit "Publish", and upload the resulting PDF file $\%$ to this page for the tune-up assignment. Please do not submit a link to a file \% but instead upload the file itself. Late penalty: 2 points per minute late.
\% (a) Copy, paste and run the Matlab code from lecture slide 1-16 to generate $\%$ the cosine signal $x(t)=\cos \left(2 \pi f_{0} t\right)$ with $f_{0}=440 \mathrm{~Hz}$ and play it as an audio $\%$ signal for 3 s at a sampling rate of $f_{\mathrm{s}}=8000 \mathrm{~Hz}$. (Using a higher standard $\%$ audio sampling rate such as 96000 Hz would give a smoother plot in part (d)).

```
% (a) 'A' note on Western scale in 4th octave (A4) @ 440 Hz
f0 = 440; % note 'A4'
fs = 8000; % sampling rate
Ts = 1/fs; % sampling time
t = 0 :Ts : 3; % 3 seconds
x = cos(2*pi*f0*t);
sound(x, fs);
pause (3);
```

$\%$ (b) Add to the code in (a) to generate a new signal $y(t)=\cos \left(2 \pi f_{0} t\right) \cos \left(2 \pi f_{1} t\right)$ $\%$ with $f_{1}=110 \mathrm{~Hz}$ by using the same sampling rate of $f_{\mathrm{s}}=8000 \mathrm{~Hz}$.

```
% (b) Multiply cosine @ 440 Hz and cosine @ 110 Hz
% Modified code from left side of lecture slide 3-3.
f1 = 110; % 'A' in the second octave
x1 = cos(2*pi*f1*t);
y = x .* x1;
% (c) Add to the code in (b) to playing y(t) as an audio signal.
% Describe what you hear.
% Express y(t) as a sum of two sinusoids.
(c) Play y(t) at a sampling (playback) rate of 8000 Hz.
I hear two notes/tones at a lower pitch than 440 Hz.
The product can be written as a sum of two cosines.
Using lecture slide 3-2,
y(t) = 0.5 cos(2 pi 330 t) + 0.5 cos(2 pi 550 t)
Tones at 330 Hz (E 4th octave) and 550 Hz (C# 5th octave)
are harmonics of 110 Hz. See Piano frequencies.
sound(y, fs);
```

```
% Note: In class, I mentioned needing to scale y before playback
```

% Note: In class, I mentioned needing to scale y before playback
% using the sound command. It isn't needed. The sound command
% using the sound command. It isn't needed. The sound command
% will clip amplitudes of the signal outside [-1, 1]. The product
% will clip amplitudes of the signal outside [-1, 1]. The product
% cos(2*pi*f0*t) cos(2*pi*f1*t) will have amplitude on [-1, 1]
% cos(2*pi*f0*t) cos(2*pi*f1*t) will have amplitude on [-1, 1]
% because each cosine has amplitude on [-1, 1].

```
% because each cosine has amplitude on [-1, 1].
```

\% (d) Plot one period of $y(t)$. We'll need to find the periodicity of $y(t)$.
\% The product of two sinusoids at frequencies f0 and f1 produces
$\%$ frequencies at f0+f1 and f0-f1. You could modify the code from the
\% bottom right side of lecture slide 3-3.
ffund $=\operatorname{gcd}(f 0+f 1, f 0-f 1) ; \% 440 \mathrm{~Hz}+/-110 \mathrm{~Hz}$

Tfund $=1 /$ ffund;
$\mathrm{n}=$ round (Tfund / Ts); \% Tfund / Ts isn't an integer. plot($t(1: n), y(1: n)$);
\% See belowfor the plot. Plot has artifacts as noted below.

