```
% Tune-Up #7
% Copy this file into a Matlab script window, add your code
% and answers to the questions as Matlab comments, hit "Publish",
% and upload the resulting PDF file to this page for the tune-up
% assignment. Please do not submit a link to a file but instead
% upload the file itself. Late penalty: 2 points per minute late.
% This tuneup is to help you get started on the mini project #2.
% NOTE: imshow(image) will display the image by clipping the pixel
% values outside a certain range. The range depends on the data
% type of the image. In our case, the image is double and the
% range is [0, 1] where 0 corresponds to black and 1 to white.
% (a) Load the image. Download the image from
% https://users.ece.utexas.edu/~bevans/courses/signals/homework/echar512.matLinks to an external site.
% and place it in the current directory or a directory on the Matlab path.
load echar512.mat
% The load command will define a Matlab matrix echart.
% (b) Display the image.
```


figure;

```
imshow(echart, [0 255]);
```

\% Describe the image.
\% --> Image has six rows of the same text
\% E W S X M P E W S X M P
\% with the font size (different resolutions)
\% getting smaller from top to bottom.
(c) Interrogate the values in the image by clicking on the
\% Matlab variable in the workspace.
\% What values are in the image?
\%
\% To what grayscale intensities do they correspond?
\% --> 0 for black and 255 for white. It's a binary image.
(d) Apply a two-point averaging filter along the rows.
\% Display the resulting image.
\% Describe the result image compared to the original.
\% --> When the two-point averaging filter passes across a
\% one-pixel wide line, the input image would have pixel
\% values 2552550255255 and the output values for
\% the middle three pixel values would be 510255 255,
\% which is white mid-gray mid-gray, respectively, when
\% displayed using a range of [0, 510]. The one pixel-wide
\% line in the input image has been smoothed out (widened
\% and made mid-gray) which might not be visible.
\% --> When the two-point averaging filter passes across a
\% two-pixel wide line, the input image would have pixel
\% values 25525500255255 and the output values for
\% the middle four pixel values would be 5102550255 ,
\% which is white mid-gray black mid-gray, respectively,
\%

```
% The two pixel-wide line in the input image has been
% smoothed out (widened to three pixels) and appears to
% be a thinner one-pixel black line.
FIRcoefficients1 = [1 1];
echartFilteredAlongRows1 = filter(FIRcoefficients1, 1, echart, [], 2);
figure;
imshow(echartFilteredAlongRows1, [0 510]);
% (e) Apply a three-point averaging filter along the rows.
% Display the resulting image.
% Describe the result image compared to the original.
% --> When the three-point averaging filter passes across
% a one-pixel wide line, the input image would have
% pixel values 255 255 255 255 0 255 255 255 255 and
% the output values for the middle five pixel values
% would be 765 765 510 510,
% which is white white light-gray light-gray, respectively,
% when displayed using a range of [0, 765].
% The one pixel-wide black line in the input image has been
% widened and made light-gray (appears white).
FIRcoefficients2 = [1 1 1];
echartFilteredAlongRows2 = filter(FIRcoefficients2, 1, echart, [], 2);
figure;
imshow(echartFilteredAlongRows2, [0 765]);
```


E W S X N
 E W S X M I
 EWSXMPE
 EWSXMPEW
 EWS X MPEWSX
 FWSXMPEWSXMP

E W S X N
E W S X M I
EWSXMPE
EWSXMPEW
EW S X M P F W S X
F. WS X M PEWSXMP

E W S X N
 E W S X M I
 EWSXMPE
 EWS X MPEW
 EWS X M P E W S X
 FW S X M P F W S X M P

