
A Knowledge-Based Environment

for the Design and Analysis of

Multidimensional Multirate

Signal Processing Algorithms

A THESIS

Presented to

The Academic Faculty

By

Brian Lawrence Evans

In Partial Ful�llment

of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Georgia Institute of Technology

June, 1993

Copyright c
 1993 by Brian Lawrence Evans

A Knowledge-Based Environment

for the Design and Analysis of

Multidimensional Multirate

Signal Processing Algorithms

Approved:

James H. McClellan, Chairman

Ronald W. Schafer

Russell M. Mersereau

Date approved by Chairman

To my parents

Acknowledgments

I would like to thank my parents for their encouragement, support, motivation, and

drive to search for truth and pursue knowledge. My parents were great examples

of the personal bene�ts of higher education. I would also like to thank my sisters,

Melanie and Wendy, for their concern and support over the years.

I would like to thank my advisor and mentor, Dr. James McClellan. He has

motivated me to reach my potential as researcher and allowed me to pursue the

educational impact of my work. Dr. McClellan has my utmost respect.

I would like to thank the members of the reading committee| Dr. Russell

Mersereau, Dr. Ronald Schafer, and Dr. James McClellan| and Dr. Alfred Andrew

from the Mathematics Department for thoroughly reading the thesis. The Mathemat-

ica initiatives in the signal processing courses here at Georgia Tech would not have

been possible without theMathematica-based Calculus initiatives spearheaded by Dr.

Andrew, Dr. Thomas Morley, and Dr. George Cain.

I would also like to thank the �fth member of my defense committee, Dr. Sudha

Yalamanchilli. I have enjoyed the basketball games with and against him.

I would like to thank Dr. Barnwell and Dr. Schafer for establishing and main-

taining an excellent signal processing program.

I would like to thank Dr. David Schwartz for suggesting the use of Mathematica

as a platform upon which to build a symbolic signal processing environment. Later,

Mathematica turned out to be useful in helping students learn signal processing theory.

I would like to thank Dr. JamesWiltsie for sponsoring my research at the Georgia

iii

Tech Research Institute (GTRI) and Dr. Chrystanos Papanicolopulos for hiring me

at GTRI for two quarters after I completed my Master's degree.

I would like to thank the State of Georgia for my primary �nancial support as

a research assistant. I would like to thank Dr. Sayle for supporting me as a teaching

assistant to develop Mathematica courseware. The remainder of my funding came

from the Joint Services Electronics Program under contract #DAAL-03-90-C-0004.

I would like to thank Dr. Je�rey Froyd and Dr. Mark Yoder of the Rose-Hulman

Institute of Technology for their feedback over the years. I have appreciated all the

comments and suggestions by users of the signal processing packages and Notebooks.

I would like to thank two professors from the University of Queensland, Dr. Keith

Matthews of the Mathematics Department and Dr. George Havas of the Computer

Science Department, for their insights into Smith form decomposition algorithms.

I would like to express my appreciation for my closest friends Sam \Jan-Toua"

Liu, \Fatma" Ayhan Sakarya, and Gregory \Lee" Schug. I have also valued the

friendship of Terry \Hope Sack" Crone, Kevin \Happy" Hargaden, Faouzi Kossentini,

Nancy \Nance" Lillo, Keith \Mad Dog" Matlack, and Kambiz Nayebi, as well as those

in the Emmanuel Catholic Charismatic Prayer Group and the Georgia Tech Turkish

Community. I would like to thank Kay Gilstrap and Stacy Schultz for their help.

I would like to thank Halûk Ayd�no�glu, Wilson Chung, Jos�e Crespo, and Faouzi

Kossentini for helping me proof-read my thesis. I would also like to thank Faouzi and

his wife Faten for their extraordinary help in setting up for the oral defense.

I am so thankful to the Creator God for continuing to sustain me physically,

emotionally, and spiritually. I am indebted beyond repayment for the love shown by

Jesus Christ and the guidance given by the Holy Spirit. God gave me the strength

to get through the �nal push to �nish the thesis.

I am also thankful to God for communicating with us in many varied ways. I

have tried to keep in mind that \what is seen is transitory, and what is unseen lasts

forever" (II Corinthians 4:20).

iv

Trademarks

Connection Machine is a trademark of Thinking Machines Inc.

ILS is a trademark of Signal Technology Inc.

Macintosh is a trademark of Apple, Inc.

MACSYMA is a trademark of MIT.

Maple is a trademark of Waterloo University, Canada.

Mathematica is a trademark of Wolfram Research Inc.

Matlab is a trademark of The Math Works Inc.

MS Windows is a trademark of MicroSoft.

Monarch is a trademark of The Athena Group.

NeXT is a trademark of NeXT Computer, Inc.

N!Power is a trademark of Signal Technology Inc.

PostScript is a trademark of Adobe Systems Inc.

Signal Processing WorkSystem is a trademark of Comdisco Systems Inc.

TEX is a trademark of the American Mathematical Society.

Unix is a trademark of AT&T.

X Windows is a trademark of MIT.

v

Copyrights

Khoros is copyrighted by the University of New Mexico.

Blosim, Gabriel, and Ptolemy are copyrighted by the University of California
at Berkeley.

The multidimensional signal processing packages and Notebooks (SPP&N) for
Mathematica are copyrighted by the Georgia Tech Research Corporation.

vi

Contents

Acknowledgments iv

Trademarks v

Copyrights vi

Contents x

List Of Figures xii

List Of Tables xiii

Summary xiv

1 Introduction 1

1.1 Rapid Prototyping : 3

1.2 Algorithm Development : 3

1.3 The Multidimensional Signal Processing Packages (MDSPPs) : : : : : 5

1.4 Layout of the Thesis : 7

1.5 Scope of the Thesis : 8

2 Background 10

2.1 Representing Signals as Objects : 13

2.2 Algorithm Design Environments : 14

2.3 Mathematica Programming for KBSP : : : : : : : : : : : : : : : : : : 17

vii

CONTENTS

2.3.1 Mathematica : 18

2.3.2 Mathematica As a Platform for Algorithm Design : : : : : : : 19

2.4 Summary : 23

3 Multidimensional Multirate Signal Processing 25

3.1 Lattice and Matrix Theory : 26

3.1.1 De�nitions : 27

3.1.2 Uniform Resampling of Lattices : : : : : : : : : : : : : : : : : 29

3.1.3 Regular Unimodular Matrices : : : : : : : : : : : : : : : : : : 31

3.1.4 Decomposing A Resampling Matrix Into Smith Form : : : : : 31

3.1.5 Finding Common Resampling Matrix Factors : : : : : : : : : 35

3.2 Resampling Operations in Cascade : : : : : : : : : : : : : : : : : : : 37

3.3 The Role of Smith Form Matrices : 39

3.3.1 Computation of Coset Vectors : : : : : : : : : : : : : : : : : : 39

3.3.2 Computing the Greatest Common Sublattice : : : : : : : : : : 41

3.3.3 Simpli�cation of Resamplers in Cascade : : : : : : : : : : : : 42

3.4 Commutativity of Resamplers in Cascade : : : : : : : : : : : : : : : : 43

3.5 A Comprehensive Set of Rules : 47

3.6 Summary : 59

4 The Signal Processing Packages: Implementing Linear Systems The-

ory in Mathematica 60

4.1 De�ning Signals : 60

4.2 De�ning Systems : 62

4.3 Plotting Signals and Systems : 64

4.4 Continuous and Discrete Convolution : : : : : : : : : : : : : : : : : : 65

4.5 Summary : 69

5 Analysis of Multidimensional Signals and Systems 70

5.1 Extending Signal Properties in E-SPLICE and ADE : : : : : : : : : : 71

viii

CONTENTS

5.2 Linear Transforms : 72

5.3 Analysis of One-Dimensional Systems Using Transforms : : : : : : : : 74

5.3.1 Solving Di�erence and Di�erential Equations : : : : : : : : : : 74

5.3.2 Generalized Signal Analysis : : : : : : : : : : : : : : : : : : : 77

5.4 Analysis of Multirate Systems Using Transforms : : : : : : : : : : : : 79

5.5 Multidimensional Stability Analysis : : : : : : : : : : : : : : : : : : : 83

5.5.1 Symbolic Analysis of Stability : : : : : : : : : : : : : : : : : : 83

5.5.2 Graphical Analysis of Stability : : : : : : : : : : : : : : : : : : 85

5.6 Analysis of Multidimensional Multirate Systems Using Transforms : : 87

5.6.1 Automated Two-Dimensional Signal Analysis : : : : : : : : : 87

5.6.2 Visualization of Downsampling in Two Dimensions : : : : : : 89

5.6.3 Automatic Derivation of Transform Properties : : : : : : : : : 93

5.7 Summary : 94

6 Rearranging Multidimensional Systems 97

6.1 Extending System Properties in E-SPLICE and ADE : : : : : : : : : 98

6.2 Algorithm Rearrangement : 100

6.2.1 General Procedure : 100

6.2.2 Rearranging A Multidimensional Rational Rate Changer : : : 101

6.3 Finding Optimal Algorithms : 102

6.4 Summary : 103

7 Generating Equivalent Code for Algorithms 104

7.1 Generating TEX Code : 104

7.2 Generating Complete Ptolemy Simulations : : : : : : : : : : : : : : : 106

7.2.1 Program Synthesis : 106

7.2.2 Converting Algebraic Formulas to Working Ptolemy Simulations 107

7.2.3 Code Generation After Algorithm Rearrangement : : : : : : : 111

7.3 Summary : 114

ix

8 Interactive Design of Two-Dimensional Decimation Systems 115

8.1 Theory Underlying Decimator Design : : : : : : : : : : : : : : : : : : 116

8.2 Design Examples : 118

8.3 Summary : 121

9 Impact on the Engineering Curriculum 125

9.1 Student Handout : 128

9.2 Interactive Tutorial Notebooks : 128

9.3 Notebooks Serving as On-Line Reference : : : : : : : : : : : : : : : : 131

9.4 Notebooks for Self-Evaluation : 133

9.5 Summary : 134

10 Conclusion 138

10.1 Contributions : 140

10.2 Future Research : 143

Appendix A Ptolemy Simulation Code 145

A.1 Code Generation for the Two-Channel Non-Uniform Filter Bank : : : 145

A.2 Code Generation for a More E�cient Form of the Filter Bank : : : : : 149

Appendix B Glossary 153

Bibliography 157

Vita 167

x

List of Figures

2.1 Categories of Existing Algorithm Support Tools : : : : : : : : : : : : 10

2.2 Environments In
uenced by the Signal Representation Language : : : 12

3.1 Iterative Algorithm in the MDSPPs to Compute the Smith Form : : 33

3.2 Examples of Di�erent Smith Forms : : : : : : : : : : : : : : : : : : : 34

3.3 Equivalent Structures for " L = KL0 Followed by #M = KM 0 : : : : 38

3.4 Five Equivalent Forms of an Up/downsampler Cascade : : : : : : : : 44

3.5 Four Equivalent Forms of a Down/upsampler Cascade : : : : : : : : 45

3.6 Identities for Downsamplers : 48

3.7 Identities for Upsamplers : 49

3.8 Interactions between Up/downsamplers and LTI Filters : : : : : : : : 50

3.9 Identities for Cascades of Upsamplers and Downsamplers : : : : : : : 51

3.10 Commutativity of Cascades of Upsamplers and Downsamplers : : : : 52

3.11 Fundamental Identities Based on the Smith Form Decomposition : : 53

3.12 Removing Redundancy in Cascades of Upsamplers and Downsamplers 54

3.13 Switching Operations in Non-commutable Cascades : : : : : : : : : : 56

3.14 Interaction between Up/downsampler Cascades and Shifters : : : : : 57

3.15 Polyphase Implementations of Rational Decimation Systems : : : : : 58

4.1 Visualizing Two-Dimensional Sequences as Density Plots : : : : : : : 66

5.1 Structure of the One-Dimensional Transform Rule Bases : : : : : : : 75

5.2 Interaction with the Di�erential Equation Solver : : : : : : : : : : : : 76

xi

5.3 Solving the Fibonacci Di�erence Equation : : : : : : : : : : : : : : : 78

5.4 One-Dimensional Analog Signal Analysis : : : : : : : : : : : : : : : : 80

5.5 One-Dimensional Discrete-Time Analysis of a Multirate Signal : : : 81

5.6 Deriving Input-Output Relationship for a Non-Uniform Filter Bank : 82

5.7 Stability Analysis of a Non-Separable Two-Dimensional Signal : : : : 84

5.8 Two-Dimensional Pole-Zero Diagrams for an Unstable Signal : : : : 86

5.9 Signal Analysis of Aliasing in Two Dimensions : : : : : : : : : : : : : 88

5.10 Quincunx Downsampling Without Aliasing : : : : : : : : : : : : : : : 90

5.11 Quincunx Downsampling With Aliasing : : : : : : : : : : : : : : : : 92

7.1 Algorithm to Convert Algebraic Expressions to Ptolemy Simulations 109

7.2 Ptolemy Simulation of Filter Bank Run From Within Mathematica : 110

7.3 Deriving the Input Bandpass Signal for the Filter Bank Simulation : 112

7.4 Block Diagram Form of the Two-Channel Filter Bank : : : : : : : : : 113

8.1 Flow Graph of a Two-Dimensional Decimator : : : : : : : : : : : : : 115

8.2 Automatic Design of a Quincunx Decimator : : : : : : : : : : : : : : 120

8.3 Automatic Design of a Decimator for an Arbitrarily-Shaped Passband 122

8.4 Automatic Design of a Decimator for Circularly Bandlimited Signals 123

9.1 Animation of Filter Response for Corrupted Poles : : : : : : : : : : 132

10.1 Descendants of Kopec's Signal Representation Language : : : : : : : 139

xii

List of Tables

1.1 The Prototyping Process and Examples of Supporting Tools : : : : : 4

2.1 Signal Properties in SPLICE, E-SPLICE and ADE : : : : : : : : : : 14

2.2 System Properties in E-SPLICE and ADE : : : : : : : : : : : : : : : 15

2.3 Overview of Algorithm Design Environments : : : : : : : : : : : : : : 16

2.4 Mathematica Operators That Mimic C Syntax : : : : : : : : : : : : : 19

4.1 Signals Introduced by the Signal Processing Packages : : : : : : : : : 61

4.2 New Operators (and Their Parameters) in the MDSPPs : : : : : : : 63

4.3 Modi�cation to the Square Matrix Rule for Convolution : : : : : : : 68

5.1 Signal Properties Supported by the Signal Processing Packages : : : : 73

5.2 High-Level Abilities of the Signal Processing Packages : : : : : : : : 95

6.1 System Properties in the MDSPPs : : : : : : : : : : : : : : : : : : : 99

9.1 Coverage of Linear Systems Topics by Tutorial Notebooks : : : : : : 130

9.2 Past and Present Uses of Our Signal Processing Extensions : : : : : : 136

10.1 Contributions of the Thesis : 141

10.2 Future Research : 144

xiii

Summary

This thesis discusses the design and analysis by computer of algorithms composed of

linear periodically time-varying (LPTV) multidimensional systems. Analysis of linear

systems is based on linear transforms (e.g. z and Laplace transforms). Algorithm

design rewrites component systems to reduce the implementation cost.

To support algorithm design for multidimensional systems, the thesis derives

the rules for rewriting the interconnections of discrete-time LPTV multidimensional

systems, a.k.a. multidimensional multirate systems, as well as develops metrics to

measure implementation costs. We encode the rewrite rules, number theoretic al-

gorithms underlying the rules, and cost metrics in a set of multidimensional signal

processing packages (MDSPPs) for the computer algebra program Mathematica.

For algorithm analysis, the MDSPPs implement the multidimensional multi-

sided forms of the commonly used linear transforms, and the transforms can justify

their answers with natural language. Using the transforms, the MDSPPs can deduce

ranges on free parameters to guarantee stability and generate input-output relation-

ships. Engineers can use the MDSPPs to visualize signals in transform domains.

The MDSPPs represent signals as functions and systems as operators. In such

an algebraic framework, the many interconnections in complex systems cannot be

captured. The MDSPPs can, however, convert an algorithm for layout in the Ptolemy

block diagram environment, which �ts the MDSPPs into a rapid prototyping process.

Please direct any electronic correspondence concerning this research to Brian

Evans at evans@eedsp.gatech.edu. A freely distributable version of the MDSPPs

and Notebooks is available via anonymous FTP to gauss.eedsp.gatech.edu (IP

#130.207.226.24). An estimated 10,000 people use these extensions.

xiv

CHAPTER 1

Introduction

Signal processing algorithms are often expressed as either
ow graphs or algebraic

formulas. As
ow graphs, algorithms are decomposed into blocks with each block

consisting of a set of input signals, an operator, and a set of output signals. In an

algebraic framework, algorithms are decomposed into a sequence of formulas contain-

ing nested calls to operators (systems) which take functions (signals) as arguments.

Operators map one or more input signals to one or more output signals. A primary

drawback of an algebraic representation of algorithms is that it cannot capture the

complex interconnections characteristic of large systems that are easily represented

by block diagrams.

This thesis describes a software environment that takes advantage of both alge-

braic and block diagram representations of algorithms by

� automating the design and analysis of algebraic forms of signal processing al-

gorithms and

� converting the algebraic forms of algorithms to block diagram representations

for simulation and prototyping.

In the new environment, analysis of signal processing formulas is primarily based

on linear transforms of multidimensional signals| the z, discrete-time Fourier, and

discrete Fourier transforms of discrete-time signals, and the Laplace and Fourier trans-

forms of continuous-time signals. Design capabilities include the interactive graphi-

cal design of two-dimensional decimation systems and the symbolic rearrangement of

linear, multidimensional, periodically time-varying, discrete-time systems, i.e. mul-

tidimensional multirate systems. The conversion of algorithms to a block diagram

1

Introduction

representation enables designers to insert developed algorithms into a layout of a

complex system.

Our new environment encodes a comprehensive collection of rules and routines

underlying signal processing in a set of multidimensional signal processing packages

(MDSPPs) [1, 2, 3] for the MathematicaTM [4] computer algebra program. For exam-

ple, the MDSPPs can apply commutative and associative rules to switch the order

of linear shift-invariant operators [5]. The MDSPPs implement many key routines

such as the family of Smith form integer matrix decompositions which unlocks e�-

cient implementations of the generalized multidimensional discrete Fourier transform

when the decompositions are applied to the underlying sampling matrix [6].

In combining the rules and routines underlying signal processing into a single

framework, we have been in
uenced by the computing environments for

� algorithm design especially SPLICE [7, 8, 9] and ADE [10, 11, 12],

� symbolic mathematics especially Mathematica, and

� rapid prototyping especially Ptolemy [13, 14, 15, 16].

SPLICE and ADE are interpretive environments for the design of one-dimensional

multirate signal processing algorithms represented as formulas. These two environ-

ments can analyze properties of signals and �nd better implementations of algorithms.

SPLICE and ADE as well as Mathematica and other computer algebra programs rep-

resent algorithms as formulas so they cannot capture the interconnections inherent

in large complex systems. Using hierarchical block diagram representations, Ptolemy

can represent and simulate complex systems as well as generate the equivalent C,

DSP assembly language, and VLSI Hardware Descriptive Language (VHDL) code

for complex systems. Essentially, our MDSPPs not only extend the ideas present in

SPLICE and ADE to multidimensional multirate systems but also �t into a rapid

prototyping process for signal processing algorithms.

2

Rapid Prototyping

1.1 Rapid Prototyping

In designing signal processing systems, signal processing theory is translated into

hardware and software. That is, the mathematical principles underlying the sig-

nal processing theory are combined with knowledge of computer architectures and

programming to produce a working system. The design process typically begins by

translating speci�cations into signal processing operations. Once the component op-

erations are identi�ed, they are individually designed by modifying old algorithms or

by developing entirely new ones. The complete system is usually simulated before it

is assembled into a prototype. Table 1.1 outlines the prototyping process.

Design tools, as shown in Table 1.1, often address particular aspects of pro-

totyping, but they rarely have the ability to transfer design information directly to

other computer-aided design (CAD) tools. Hence, the prototyping process becomes

fragmented because algorithms cannot be exchanged between environments. Fur-

thermore, side information about algorithms representing lessons learned during one

prototyping stage cannot be electronically transmitted to other stages. Today, many

\isolated" tools are used in prototyping signal processing systems, thereby driving up

prototyping costs. \For example, in a recent moving target Radar system, the signal

processor accounted for over 50% of the total material cost of production" (page 10

of [17]). Simply put, the complexity of prototyping signal processing processors has

outpaced the sophistication of and interaction between CAD tools [17].

1.2 Algorithm Development

In this thesis, we discuss a software environment that is useful in the algorithm de-

velopment phase of prototyping. By algorithm development, we mean more than

numerical simulation of algorithms, i.e. tweaking numeric parameters until the algo-

rithm performs well enough. We also mean the symbolic reasoning about algorithms

that occurs before and after simulation. Symbolic reasoning involves analyzing and

3

Algorithm Development

Development Typical Tool Typical
Activity Functions Availability Sources

System Requirements Traceability GEC Marconi
System

Requirements Flowdown Sparse i-Logix
Engineering

Algorithm Development MathWorks
Module Physical Design & Layout Mentor

Design/ VHDL Synthesis Extensive Synopsis
Upgrade

Interactive Software Centerline
Development Environment
VHDL Simulation Vantage

Simulate Extensive
Module Simulation LSI Logic

Fabricate Pick and Place Systems, with Extensive N. American
CAD design download capability Phillips

Less Test Software
Integrate Tester Interfacing Services Inc.

Extensive (TSSI)
High �delity simulation of
\outside world" for functional XpertTest

Final Test performance test Extensive/
Evolving

Generation of boundary scan Hewlett
testing at up to the system level Packard

Table 1.1: The Prototyping Process and Examples of Supporting Tools

(adapted from Table 1 in [17]; see Appendix A of [17] for
more information)

4

The Multidimensional Signal Processing Packages (MDSPPs)

�nding optimal implementations for algorithms. Analysis characterizes signals and

systems in terms of their properties which tend to be symbolic relationships rather

than numeric values. Optimal implementation seeks to rearrange the form of the

algorithm until some cost function is minimized.

Chapter 2 reviews three environments for analyzing and �nding optimal imple-

mentation of algorithms| the Signal Processing Language and Interactive Comput-

ing Environment (SPLICE), the Algorithm Design Environment (ADE), and Meta

Morphology (MetaMorph) [18, 19, 20, 21]. As previously mentioned, SPLICE and

ADE manipulate one-dimensional signals and (multirate) systems and attach prop-

erties to signals and systems. SPLICE and ADE can deduce signal properties such as

bandwidth and extent. On the other hand, system properties are used to rearrange

systems, e.g. the order of two systems in cascade can be switched if both systems

are linear and shift-invariant. By applying rules that rearrange cascaded and paral-

lel combinations of systems, Extended SPLICE (E-SPLICE) and ADE �nd optimal

implementations of one-dimensional (multirate) systems by minimizing a simple cost

function. MetaMorph manipulates morphological signals (sets) and systems (non-

linear set operators) in a similar way. In order to �t into a rapid prototyping process,

however, an environment should be able to generate equivalent code for algorithms

that would be suitable for incorporation by tools at the next level of prototyping. Un-

fortunately, ADE, SPLICE, and MetaMorph cannot generate code for algorithms.

1.3 TheMultidimensional Signal Processing Pack-

ages (MDSPPs)

The goal in creating our new algorithm development environment was to complement

the abilities of the SPLICE, ADE, and MetaMorph environments. As previously

mentioned, our new environment is a set of multidimensional signal processing pack-

ages (MDSPPs) for Mathematica that analyze and �nd optimal implementations of

5

The Multidimensional Signal Processing Packages (MDSPPs)

linear, multidimensional, multirate signal processing algorithms. Unlike SPLICE and

ADE, which only run on Symbolics machines, the MDSPPs are available for many

computing platforms because they run wherever Mathematica does. Unlike SPLICE,

ADE, and MetaMorph, the MDSPPs �t into a rapid prototyping framework be-

cause it generates block diagram descriptions for algorithms which can be inserted

into the layout of a complex system in Ptolemy. We chose Ptolemy because it can

represent and simulate complex systems, as well as generate the equivalent C code,

DSP assembly programs, and VHDL descriptions for complex systems.

Although SPLICE, ADE, and MetaMorph have been written in Lisp, we

have chosen to start at a higher level by using the symbolic mathematics program

Mathematica. Mathematica o�ers many bene�ts. Mathematica is pro�cient at partial

fraction decomposition, power series expansions, symbolic integration, and in�nite

summations, which are fundamental operations in convolution and linear transforms.

Mathematica also provides a mechanism for expressing and applying rules. Because

of the various plotting and graphics formats in Mathematica, users of the MDSPPs

can visualize (in di�erent domains) signals generated by one-dimensional and two-

dimensional (multirate) systems. Mathematica requires any routine accessible by

the user to have usage information attached to it, so all new functions come with

help information. Mathematica also supports the playing of sound and animation.

On several platforms, Mathematica o�ers a multimedia Notebook user interface [22]

that organizes formatted text, sound, graphics, animation, and Mathematica code

in a tree structure. Using the Notebook interface, we have written a user's guide,

several tutorials, and on-line help in the form of interactive electronic documents

[3, 23, 24, 25, 26].

6

Layout of the Thesis

1.4 Layout of the Thesis

As previously mentioned, Chapter 2 discusses the SPLICE, ADE, and MetaMorph

algorithm design environments and evaluates Mathematica as a platform upon which

to build an algorithm design environment. Chapter 3 uni�es the theory underly-

ing the operation of and interaction between multidimensional multirate structures.

Based on this new theory, we develop the rules that generalize the interaction be-

tween up/downsamplers and linear shift-invariant operators to multiple dimensions

in such a way as to be easily implementable by computer. Chapter 4 introduces the

representation of signals and systems in the MDSPPs.

The subsequent chapters discuss the algorithm development capabilities of the

MDSPPs. The MDSPPs

1. analyze linear multidimensional multirate structures (Chapter 5),

2. �nd optimal implementations for algorithms involving these structures (Chapter

6),

3. generate equivalent TEX
TM and Ptolemy code for these structures (Chapter 7),

and

4. assist in the interactive design of two-dimensional rational decimation systems

(Chapter 8).

The ability to generate complete Ptolemy simulations for algorithms links the MD-

SPPs to the rapid prototyping process.

The higher-level functions of the MDSPPs feature the ability to justify their

answers in the form of textual and/or graphical dialogue. For example, the linear

transform routines can show the intermediate hand calculations involved in taking

z, Laplace, and other transforms, whereas the convolution routines can illustrate by

animation the
ip-and-slide approach to convolving two piecewise functions. These

7

Scope of the Thesis

dialoguing capabilities have helped students learn the theory underlying signal pro-

cessing [3, 23, 24, 25, 26]. The Notebooks accompanying the MDSPPs guide a stu-

dent's exploration of signal processing theory. Chapter 9 assesses the impact of the

our new environment on engineering education.

Chapter 10 highlights the contributions of the thesis and summarizes areas of

future research. Appendix A gives two examples of Ptolemy code generation for a

two-channel one-dimensional non-uniform �lter bank. Appendix B is a glossary of

terms.

1.5 Scope of the Thesis

This thesis treats several diverse topics that may not appeal to all readers. Readers

with a signal processing background would probably be the most interested in Chap-

ters 3, 5, and 8 as they characterize, analyze, and design multidimensional multirate

systems, respectively. They would also be interested in Chapter 4 as it introduces

signal processing with formulas by computer, which is a review of the algebraic rep-

resentation of signals and systems as functions and operators, respectively.

Mathematicians would probably be interested in the same chapters (namely

Chapters 3, 4, and 8) but for di�erent reasons. Chapter 3 applies lattice theory

and integer matrix algebra to describe the regular insertion and deletion of points

on a uniform grid known as upsampling and downsampling, respectively. Chapter 4

derives an algorithm that performs convolution with functions described in a piecewise

manner| each interval consists of a formula that de�nes the function on that interval

and a pair of endpoints that can be symbolic (e.g. in�nite). Chapter 8 presents three

design examples that require both exact precision and
oating point arithmetic in the

calculation of free parameters. Although not discussed in this thesis, a mathematician

may be interested in the use of a computer algebra environment to derive, encode,

and test new number theoretic algorithms for integer matrix decompositions which

8

Scope of the Thesis

we present in [27].

On the other hand, computer scientists would most likely be interested in Chap-

ters 6 and 7. Chapter 6 discusses algorithm rearrangement using forward-chained

context-free rules. Chapter 7 explores automatic code generation (program synthe-

sis) for formulas using bottom-up parsing of the algorithm represented as a tree of

operations and a hash table to prevent the generation of redundant operations.

Educators would most likely be interested in Chapter 9 because it explores the

use of computer algebra systems to teach linear systems (transform) theory. We have

written Mathematica routines so that they can show students how to perform the

calculations by hand. Using Mathematica's Notebook interface, we have developed

interactive tutorials to enable students to explore new topics. Other Notebooks help

students test themselves.

In essence, this thesis weaves together concepts frommany di�erent �elds. These

concepts were necessary to make an algorithm development environment that is si-

multaneously useful to designers implementing signal processing algorithms, students

learning linear systems theory, and researchers exploring new signal processing the-

ory. Because of the multidisciplinary nature of this thesis, we provide a glossary of

terms in Appendix B.

9

CHAPTER 2

Background

Many environments have been developed for the automatic simulation, interpretation,

and design of algorithms, as shown in Figure 2.1. In testing algorithms, engineers

simulate them by passing a variety of numerical signals into the algorithm until the

output signals exhibit the desired characteristics. For some domains, signal interpre-

tation can be performed on numeric signals to produce symbols as the output (e.g.

words in speech recognition). Sometimes, engineers need assistance deriving new al-

gorithms or rearranging old algorithms to achieve a better performance (maybe fewer

multiplications and additions per output sample). In this case, the engineer begins

with a symbolic (possibly mathematical) description of an algorithm and then tries

to manipulate it into another symbolic description having a more desirable form.

Many of the computer tools available for simulation, interpretation, and design

of signal processing algorithms originated in the work of Kopec [28, 29, 30]. Kopec

developed a general simulation environment for causal numeric signals, but he set

INPUT OUTPUT
Simulation

Numeric Signal - Numeric Signal
H

H
H

H
H

H
H

H
H

Hj

Knowledge-Based

Signal Processing

Symbols - Symbols
Algorithm Design

Figure 2.1: Categories of Existing Algorithm Support Tools

10

Background

the stage for future environments by introducing an object-oriented representation

of signals. Signals, as objects, contain slots (data) and methods (procedures). Slots

include the signal's history and previously computed values. Methods include those

describing how to compute signal values. Kopec's interpretive Signal Representa-

tion Language (SRL) in
uenced the development of environments for the simulation,

knowledge-based interpretation, and design of signal processing algorithms, as shown

in Figure 2.2. All three types of environments, especially the latter two, are dis-

cussed in [31]. The �rst half of [31] discusses algorithm design environments in detail,

whereas this chapter only provides an overview of them.

The �rst algorithm design environment to follow Kopec's work is the Signal

Processing Language and Interpretive Computing Environment (SPLICE) by Myers

[7, 8, 9]. Myers extended Kopec's representation in the direction of \abstract" signals.

Abstract signals are de�ned in terms of their properties rather than in terms of their

sample values. Myers also introduced abstract systems. Combining abstract signals

and systems led to the ability to simplify and rearrange one-dimensional (multirate)

signal processing algorithms. By enumerating equivalent implementations, Extended

SPLICE (E-SPLICE) can choose implementations that are \optimal" according to a

simple cost function. Covell [10, 11, 12] improved upon E-SPLICE to create the Al-

gorithm Design Environment (ADE). ADE applies heuristics to reduce the number of

alternative implementations generated, and it uses a more complicated cost function.

Richardson [18, 19, 20, 21] applied the same concepts to morphological signals (sets)

and systems (set operators) in his MetaMorph environment.

Section 2.1 describes Kopec's work. Section 2.2 discusses the SPLICE, ADE,

and MetaMorph algorithm design environments. Although these environments

have been written in Lisp, we have chosen to write ours in theMathematica symbolic

mathematics program. Section 2.3 evaluatesMathematica as a platform for algorithm

design.

11

Background

Signal Representation Language [30]

� ?

J
J

J
J

J
J^

Simulation KBSP Algorithm Design

Integrated Signal Proc.
System [29]

?
Interactive
Laboratory
System [32]

?

Blosim [33]

Gabriel [34]

Ptolemy [13]

The KBSP Package [7]

?

Pitch Detector's
Assistant [35]

?

Interactive Signal Proc.
Under Duress [36]

?
Integrated Proc.
and Understanding
of Signals [37]

Signal Proc. Language
and Interactive Comp.
Environment [8]

?

An Algorithm Design
Environment [10]

?

Meta System for
Morphology [20]

Figure 2.2: Environments In
uenced by the Signal Representation Language

12

Representing Signals as Objects

2.1 Representing Signals as Objects

In his thesis, Kopec identi�es di�erent models for computing and obtaining signal

values [28]. As functions, signals can be computed point-by-point (and for e�ciency,

computed values are stored in a cache for future use). Finite-length signals can be

captured in an array. Data streams [38] (e.g. modems) and state-space models [39]

(e.g. Kalman �lters) form two important classes of in�nite-duration signals. These

four classes provide a way of abstracting signal computations. That is, a programmer

could ask for values of a signal without having to know how they were computed.

Hiding the method of computation is a principle of object-oriented program-

ming. As an object, a signal has data (slots) and procedures (methods) attached

to it. Under this paradigm, the description of a signal becomes more than a do-

main and range of values| it can now contain information about its parameters,

history, computational model, and so forth. This extended representation of a signal

is implemented in Kopec's Signal Representation Language (SRL) [30]. SRL hierar-

chically classi�es signals and then instantiates signals as needed. Once signals are

created, their properties remain �xed. This immutability of signals is the result of

the closure model for signals [31] and is necessary during the generation of alternate

implementations.

SRL abstracts the representation of signals so as to aid in their computation

but restricts signals to be one-dimensional �nite-extent causal sequences beginning at

time index 0. Systems are implemented as Lisp routines that map one numeric array

into another. SRL can simulate algorithms that use these representations of signals

and systems, but it cannot symbolically reason about signal properties.

Because interaction with SRL was limited to a command line interface using a

Lisp syntax, Kopec developed the Integrated Signal Processing (ISP) System [29]

which provided a graphical user interface to SRL. The ideas behind SRL and ISP

were recently implemented in the program N!PowerTM [40].

13

Algorithm Design Environments

Signal Property Meaning
Bandwidth non-zero extent of frequency domain
Center-of-Symmetry center of symmetry in the time domain
End end of non-zero extent in the time domain
End-BW end of bandwidth
Period period
Real-or-Complex value is REAL or COMPLEX
Start start of non-zero extent in the time domain
Start-BW start of bandwidth
Support non-zero extent in the time domain
Symmetry multi-valued parameter describing time-

domain symmetry; possible values are:
SYMMETRIC, ANTISYMMETRIC,
CONJUGATE-SYMMETRIC, and
CONJUGATE-ANTISYMMETRIC

Table 2.1: Signal Properties in SPLICE, E-SPLICE and ADE

2.2 Algorithm Design Environments

In his Signal Processing Language and InteractiveComputing Environment (SPLICE),

Myers further generalizes the representation of one-dimensional discrete-time signals

begun by Kopec. SPLICE allows signals to be in�nite in extent and to have arbitrary

starting and ending points. Besides keeping track of time-domain characteristics of a

signal, SPLICE captures information about the signal's bandwidth and other signal

properties (Table 2.1).

In an extended version of SPLICE (called E-SPLICE), Myers introduces \ab-

stract" signals. These are signals that do not have signal values associated with

them. Instead, they are de�ned completely by their properties. This notion allows

E-SPLICE to manipulate signals at a higher level of abstraction.

E-SPLICE also applies abstraction to systems by assigning properties to them

(see Table 2.2). Unlike signals, however, systems do not have to be instantiated be-

cause their properties do not change with di�erent values of parameters. For example,

14

Algorithm Design Environments

System Property Meaning
ASSOCIATIVE can change grouping of inputs
ADDITIVE distributes over addition
COMMUTATIVE can change order of inputs
HOMOGENEOUS scaled input gives scaled output
LINEAR additive and homogeneous
MEMORYLESS output does not depend on previous

inputs or outputs; if a single-input
system, then SHIFTINVARIANT

SHIFTINVARIANT shifted input gives shifted output

Table 2.2: System Properties in E-SPLICE and ADE

shifting by L with respect to n is linear and shift-invariant regardless of the value of

L.

Based on the properties of systems, Myers developed rules to simplify and rear-

range parts of signal processing expressions. Using these rewrite rules, E-SPLICE can

generate equivalent forms of algorithms and compare their relative costs by measur-

ing the number of additions and multiplications required. Unfortunately, E-SPLICE

blindly applies its rewrite rules. As a consequence, a combinatoric explosion in com-

puter memory and computation time can result for complicated expressions. Fur-

thermore, the equivalent forms may loose the regularity (parallelism) inherent in the

original form.

E-SPLICE set the stage for Covell's Algorithm Design Environment (ADE) [10].

ADE is a recasting of E-SPLICE from Symbolics Zetalisp into Symbolics Common

Lisp. Unlike E-SPLICE, ADE allows new abstract systems to be de�ned. New

systems are de�ned in terms of their properties. Since rules are already associated

with the properties, only rules not based on properties have to be added to handle

special cases. Describing systems in terms of their properties prevents a combinatoric

explosion in the number of rules required as new systems are added.

Compared to E-SPLICE, ADE not only encodes new simpli�cation and rewrite

15

Algorithm Design Environments

Field of Signal System Algorithm

Year Name Knowledge Simulation Properties Properties Design

1985 SRL 1-D DSP X X

1986 E-SPLICE 1-D DSP X X X X

1989 ADE 1-D DSP X X X X

1991 MetaMorph Morphology X X X X

Table 2.3: Overview of Algorithm Design Environments

rules, but the engine that applies the rewrite rules is more sophisticated. The engine

prunes the number of rewrite rules to apply to an algorithm. For example, the engine

would apply a rule to a set of parallel branches in an algorithm only if the parallelism

(regularity) in the branches would be maintained. ADE also uses a more complicated

cost function. Instead of being able to count only the number of multiplications and

additions, ADE can also count the amount of memory needed and express inequality

relationships between individual cost measures, e.g. \1 complex multiply is always

more expensive than 3 real multiplies" [41]. Like SRL and SPLICE, ADE can also

simulate algorithms.

Kopec, Myers, and Covell have focused their work on linear one-dimensional

signals and systems. Richardson [18, 19, 20, 21] has applied their ideas to the de-

sign, analysis, and simulation of morphological algorithms. Morphological signals

are sets of points, and morphological systems (non-linearly) map one set of points

to another. Richardson identi�ed signal and system properties based on set theory

and encoded a comprehensive collection of simpli�cation and rearrangement rules in

his MetaMorph environment. To aid in the �nding of optimal implementations for

morphological algorithms, Richardson developed a new cost metric that takes into ac-

count the number of maximum, minimum, union, and intersection operations as well

as the number of additions and multiplications. MetaMorph intelligently applies

its rewrite rules.

16

Mathematica Programming for KBSP

2.3 Mathematica Programming for KBSP

SPLICE, ADE, and MetaMorph are implemented in Lisp, whereas we have de-

cided to forge an algorithm design environment out of Mathematica. Mathemat-

ica [4], released in 1988, is a general mathematics program like MapleTM [42] and

MACSYMATM [43]. All three programs are standardized, documented, portable,

programmable environments. Because they embody extensive knowledge about math-

ematical structures and operations, their forte is the manipulation of formulas. For

example, they compute 7x+ 3x as 10x. They are pro�cient at factoring polynomials

and performing partial fraction expansions as well as di�erentiating and integrat-

ing expressions. Di�erentiation and integration are examples of symbolic operations

that need to know which symbols to treat as variables. For example, the expres-

sion C tan(x) contains two symbols, C and x. Integrating with respect to x yields

�C log(cos(x)), but integrating with respect to C yields C2 tan(x) = 2. Symbolic

mathematics programs can also represent and compute sequences from recursive for-

mulas.

Since signals can be represented as functions and systems as mathematical op-

erators that map signals to other signals, many signal processing algorithms can be

expressed in algebraic form as a sequence of formulas. Formulas can compute signal

values point by point or by array operations. In general, symbolic mathematics envi-

ronments do not support streams or state-space computational models [28] although

they can be programmed to do so. All three mathematics programs can implement

one-to-one transformations as recursive function calls so that well-de�ned operations

like linear transforms can be conveniently de�ned. Alternately, Mathematica and

MACSYMA can implement one-to-one transformations by applying a list of condi-

tional rules, whereas Maple lacks even the ability to express conditional rules because

it does not support pattern matching. Unfortunately, Mathematica and MACSYMA

do not have built-in mechanisms to apply rules for transformations that are not one-

to-one (e.g. searching for optimal implementations of an algorithm).

17

Mathematica Programming for KBSP

2.3.1 Mathematica

We have chosen Mathematica primarily because of its Notebook front end. The

Notebook front end provides pull-down menus, screen- and mouse-oriented editing

of previous commands, and a PostScript
TM driver for all graphics. Graphics,

animation, sound, formatted text, and Mathematica code can co-exist in the same

Notebook. Notebooks typically arrange information as a hierarchical grouping of

cells, so a user can quickly and randomly access information. A user can also choose

to interact with these active documents by modifying theMathematica code to try new

examples [22]. Although the Notebook front end is a multimedia platform that groups

ideas in a tree structure, it is not a true hypertext platform as individual ideas are not

interconnected in a web structure [44]. As a multimedia platform, however, the o�-line

documentation can be identical to the on-line documentation. The Notebook interface

exists for several windowing systems (e.g. MacintoshTM , MicroSoftTM, NeXTTM, and

XTM). Without the Notebook facility, the front end defaults to a simple teletype

(tty) terminal interface. On UnixTM machines, however, the Emacs editor can be

con�gured to run as a front end to the Mathematica kernel.

Although the user interface is machine-dependent, the back-end kernel is the

machine-independent computational engine. The kernel provides a powerful pattern

matcher, conditional rule formats, arbitrary precision arithmetic, and a programming

language. This programming language organizes code into packages (modules) much

as Lisp does. Embedded in the kernel are packages that perform integration, di�er-

entiation, matrix manipulation, and linear programming. The kernel provides pow-

erful symbolic operations such as di�erentiation and integration as well as hundreds

of computational functions such as the multidimensional numerical discrete Fourier

transform (sampled on a rectangular grid). If initialized properly, Mathematica will

automatically load new functions as they are invoked by the user [4, 45].

Making the transition to Mathematica from a high-level programming language

is not di�cult. Internally, Mathematica maintains expressions in pre�x form as Lisp

18

Mathematica Programming for KBSP

mathematical operations + - * / ++ --

= += -= *= /=

relational operators < <= > >= == !=

bit operations | &

logical operators && ||

Table 2.4: Mathematica Operators That Mimic C Syntax

does. Mathematica functions have the form

function [argument1, argument2, : : :]

Mathematica data structures have the same format:

dataType [field1, field2, : : :]

Mathematica's pre-processor enables the user to express function calls in in�x or

post-�x format. The pre-processor mimics most of the standard C operators, which

are either in in�x or post-�x notation, as shown in Table 2.4. Many of Mathematica's

list-processing primitives such as First and Rest are borrowed from Lisp, as well as

theMathematica primitives Print, Apply, Map, and MapAll. A user can customize the

pre-processor so that it can recognize a syntax that is more familiar. The novice can

learn more about Mathematica from on-line documentation (written as Mathematica

Notebooks) or from the more than 20 books written on Mathematica (we highly

recommend [46]). The help facility built into the kernel, abbreviated as ?, is more

useful when users already know the name(s) of the routine(s) they need.

2.3.2 Mathematica As a Platform for Algorithm Design

Mathematica presents an attractive platform upon which to build an environment

for algorithm design. As previously mentioned, the kernel provides ways to write

programs and encode rules [45]. In fact, many di�erent programming paradigms [38]

are o�ered: procedural, functional, object-oriented, constraint-based, and rule-based.

19

Mathematica Programming for KBSP

The Block and Module constructs are useful for writing procedures, and the Function

primitive generates the equivalent of function pointers [47]. Mathematica does not

implement object-oriented programming per se but instead allows the programmer to

attach data and code to a data type. When using such an data-directed approach, a

programmer can write code that is incrementally extensible so that the addition of a

new data type (tag) does not require modi�cation of existing code. Constraint prop-

agation, implemented by the Solve command, only applies for equality constraints.

Rules in Mathematica are speci�ed using an if: : : then form. When the conditional

part of the rule is satis�ed, its consequence is evaluated. The consequence expression

can reference patterns matched during the evaluation of the conditional clause. This

rule framework only supports reasoning with certainty.

These programming styles o�er two direct advantages over high-level languages

for implementing signal processing operations. First, as a consequence of support of

the functional programming paradigm, cascaded systems (operators) become nested

calls to Mathematica objects. Second, Mathematica provides several ways to encode

rules and apply them to expressions. One way is to attach rules to object heads

(function names). Mathematica will �re such rules whenever an expression contains

that function. For example, the relationship

<efx+ yg = <efxg + <efyg

can be rendered inMathematica by either attaching the rule to the Re or Plus built-in

primitives:

Re/: Re[x + y] := Re[x] + Re[y]

Plus/: Re[x + y] := Re[x] + Re[y]

The := de�nes a procedure in Mathematica, but unlike many high-level languages,

several de�nitions can be attached to an object to cover di�erent combinations of ar-

guments. The underscore character indicates a pattern to be matched (x_ is analogous

to ?x in Lisp-based pattern matchers [48]). If the �rst de�nition above is evaluated,

20

Mathematica Programming for KBSP

Mathematica's read-evaluate loop will check this rule every time the real part of any

quantity is sought, even though the rule does not apply. Therefore, the �rst but not

the second de�nition will slow down computations involving the Re function such

as taking the absolute value of a complex number because Mathematica's Abs[x]

function is implemented as Sqrt[Re[x]^2 + Im[x]^2].

For any complicated operation, it is desirable for a knowledge-based environment

to justify its answers. Students may want to learn how to perform the operation by

hand, whereas designers and researchers may want to verify the approach taken by

the knowledge base. When the knowledge base evaluates a recursive operation (such

as one-to-one transformations) as recursive function calls, the order of operations may

follow a pre-order traversal of the tree form of the current expression. For example,

if the Fibonacci sequence were de�ned as

fn = fn�1 + fn�2 f0 = 0 f1 = 1

then tracing calls to f for f8 would �rst show f7 + f6, but then it would show the

computations involved in computing f7. After f7 had been computed, then the com-

putations for f6 would be shown. In this case, displaying the intermediate calculations

would only show the transformation of nested sub-expressions as they are decomposed

(i.e. a depth-�rst traversal of the tree of operations to compute). Such a dialogue

would not appear natural or be easy to follow because all of the terms involved in the

computation would not be shown at each intermediate step.

For the purposes of displaying natural dialogue, a more desirable way to encode

recursive operations is to collect related rules in a list (called a rule base) and apply

them recursively (e.g. using ReplaceRepeated). Since the rules are not attached to

any function name (head), this approach avoids slowing down unrelated computa-

tions, as was the case when we attached rules to the Re primitive. Another bene�t

is that a programmer can control how the rules are applied. For one-to-one transfor-

mations, the programmer can take the expression to be transformed, apply the �rst

valid rule, and display the intermediate result. By repeating this method until the

21

Mathematica Programming for KBSP

transform is computed, the resulting dialogue would mimic how a human would take

the transform. This method also allows the user to decide when to �re the rules. Our

multidimensional signal processing packages (MDSPPs) implement transforms using

this rule-based approach.

Being a symbolic mathematics environment, Mathematica does more than ap-

ply rules. For example, two primitives| partial fraction decomposition (Apart) and

power series expansion (Series)| are critical for taking inverse transforms. The abil-

ity to factor, expand, and rearrange polynomials plays another key role in computing

symbolic transforms. A programmer can combine these mathematical operations with

the rule-based approach to encode powerful routines to perform the z-transform and

other one-to-one transformations. The user can extend the routines by simply adding

transform pairs as rules.

Besides implementing a wide variety of programming styles, this environment

provides other advantages for algorithm design:

1. dynamic data typing,

2. diverse graphics capabilities, and

3. code generation.

Dynamic data typing allows valueless symbols and permits variables to assume any

data type, although Mathematica 1.0 generally assumes that unassigned symbols

represent a real-valued quantity whereas Mathematica 2.0 generally assumes that

unassigned symbols represent a complex-valued quantity. The kernel can graph one-

dimensional functions and parametric relationships. It also supports scatter, density,

and contour plotting as well as three-dimensional graphics. On general purpose com-

puters, Mathematica's ability to generate the equivalent Fortran, C, and TEX code

for mathematical formulas (by default) and signal processing expressions (by exten-

sion) becomes useful, because the new code can be spliced into existing programs and

documents.

22

Summary

The Mathematica kernel does come with some disadvantages for algorithm de-

sign. First, the level of abstraction means that numerical computations are slower,

although Version 2.0 introduces the notion of compiled functions to speed this up.

Second, Mathematica can only chain rules in one direction| it is not an inferenc-

ing engine. Third, the rule rewriting mechanism applies a list of production rules

in sequential order to transform one expression into another. That is, Mathematica

does not generate a tree of all possible new expressions, and therefore, it does not

provide heuristic techniques to search through a solution space. Finally, common

signal processing operators are, for the most part, not available in Mathematica. The

multidimensional signal processing packages overcome the last two de�ciencies.

2.4 Summary

This chapter summarizes previous algorithm design environments which have their

origins in Kopec's work [28, 29, 30]. Kopec's key contribution was the abstraction

of signals as self-contained objects. In subsequent work, Myers applied abstraction

to systems and enhanced the abstraction for signals [7, 8, 9]. Combining abstract

signals and systems lead to the ability to simplify and rearrange one-dimensional

(multirate) signal processing algorithms and, ultimately, to �nd optimal implementa-

tions of algorithms based on a simple cost function. Inspired by Myers' work, Covell

developed e�cient inferencing strategies to apply rearrangement rules in the �nding

of optimal implementations with the option of maintaining parallelism in the algo-

rithm [10, 11, 12]. Richardson has applied the same concepts to morphological signals

and systems in his MetaMorph environment [18, 19, 20, 21].

In developing their algorithm design environments, Myers, Covell, and Richard-

son had to extend the Lisp language to implement pattern matching, inferencing

strategies, mathematical abilities, and object-oriented programming. Because Myers

and Covell encoded SPLICE and ADE (respectively) in Symbolics dialects of Lisp,

23

Summary

SPLICE and ADE are not available for general use. SPLICE, ADE, and Meta-

Morph do not support graphics and o�er only a command line interface.

Instead of beginning with Lisp, we have chosen to start at a higher level by

using the symbolic algebra program Mathematica. The Mathematica programming

language is essentially Lisp without garbage collection but with pattern matching,

forward chaining of rules, and a simple implementation of objects built in. The

Mathematica kernel adds hundreds of mathematical operations and many plotting

routines. Although the Mathematica kernel does not possess much knowledge about

signals and systems, we have programmed it to do so. The result is a set of multidi-

mensional signal processing packages (MDSPPs) forMathematica which are described

in Chapters 4{8.

Mathematica is a widely available standardized documented portable environ-

ment. On some platforms, Mathematica o�ers a sophisticated multimedia Notebook

user interface. We have written several Notebooks to accompany the MDSPPs so

that the environment is self-documenting. Chapter 9 discusses the signal processing

Notebooks.

24

CHAPTER 3

Multidimensional Multirate

Signal Processing

The ultimate goal of the new multidimensional signal processing packages (MDSPPs)

for Mathematica is to aid in the development of multidimensional multirate signal

processing algorithms. At the heart of these algorithms lies the linear periodically

time-varying discrete-time operations of upsampling and downsampling. In one di-

mension, upsampling and downsampling as well as their interconnections have been

thoroughly researched [49, 50].

The primary purpose of this chapter is to generalize the rules for the one-

dimensional multirate structures compiled in [49] to multiple dimensions. We also

develop the rules for rewriting an upsampler and downsampler in cascade and an

upsampler, shifter, and downsampler in cascade. In the case of the up/downsampler

cascade, we analyze the algorithms underlying both the time- and frequency-domain

conditions for commutativity. For completeness, we include rules reported by other

authors such as polyphase implementations of multidimensional rational decimation

systems (rate changers) [51, 52]. This chapter derives the algorithms underlying these

rules in such a way as to be easily implementable by computer. We have encoded the

rules and the underlying algorithms in the MDSPPs.

In one dimension, many of the multirate rules depend on the commutativity

property of multiplication over the semigroup of non-zero integers. Because of com-

mutativity, integers can be factored into a product of primes. In multiple dimensions,

resampling is characterized by the semigroup of non-singular square integer matrices

called resampling matrices. The product of resampling matrices rarely commutes, and

25

Lattice and Matrix Theory

as a consequence, factoring must be generalized using left and right matrix factors.

The left and right matrix factors, however, are the same for the subset of diagonal

resampling matrices. Diagonal resampling matrices correspond to processing multi-

dimensional data separately, one dimension at a time. In simplifying and rearranging

cascades of upsampling and downsampling operations, it is essential to transform

multidimensional multirate operators into a separable form.

In this chapter, we address several fundamental issues associated with the de-

sign and implementation of multidimensional multirate systems. Section 3.1 reviews

pertinent background material including concepts from lattice theory and matrix the-

ory (especially the Smith Form decomposition and the least common right multiple).

These mathematical disciplines are needed for a rigorous theory of multidimensional

resampling operations. Section 3.2 investigates the one-dimensional rules involving

cascades of upsamplers and downsamplers that can be generalized to multiple dimen-

sions by using only matrix multiplication and inversion. In Section 3.3, we apply the

Smith Form decomposition of a resampling matrix to several problems: computing

coset vectors, �nding greatest common sublattices, and simplifying up/downsampler

cascades. Section 3.4 discusses two new sets of equivalent conditions for the com-

mutativity of an up/downsampler cascade. Section 3.5 de�nes other new rules and

collects them all together to form a symbolic algebra for multidimensional multirate

signal processing which we have encoded as a part of the multidimensional signal

processing packages. We summarize our �ndings in Section 3.6.

3.1 Lattice and Matrix Theory

In this section, we present a summary of relevant concepts from the theory of lat-

tices and the theory of matrices. Both are necessary for a rigorous understanding of

uniformly sampled (or resampled) signals.

Multidimensional data can be sampled on rectangular, hexagonal, polar, and

26

Lattice and Matrix Theory

other grids [53, 54, 55]. In this chapter, we only consider uniform sampling. Two

common uniform sampling grids for image processing are rectangular and hexagonal.

Each point on a uniform sampling grid is de�ned by an integer vector from the

origin to the point. We will refer to the collection of all such integer vectors as

RI . RI is an example of a lattice, i.e. a regular arrangement of points in a space.

Lattices, sublattices, resampling matrices, and other related topics are de�ned in

Section 3.1.1. Section 3.1.2 de�nes multidimensional upsampling and downsampling.

The remaining subsections discuss decomposing and factoring resampling matrices

and the relationship of resampling matrices to lattices.

3.1.1 De�nitions

The results in this chapter rely on the mathematical concepts of lattices, sublattices,

cosets, and coset vectors as they relate to resampling matrices. A lattice is a sampling

grid (rectangular, hexagonal, etc.), a sublattice is a subset of a lattice obtained by

an integral linear mapping of a lattice, and cosets represent di�erent ways to shift

the sampling grid. A brief discussion of these ideas follows. For a more complete

discussion of the geometry of numbers, the reader is referred to [6, 56, 57, 58].

Lattice: A lattice is a discrete set of vectors (points, n-tuples) in Euclidean n-

dimensional space Rn that forms a group under ordinary vector addition (i.e.,

given two points in a lattice, their Euclidean di�erence and sum are also in the

lattice). A lattice, L, contains an in�nite number of points

L = fn j n = u1a1 + : : :+ unang (3:1)

where ui is an integer, and the vectors faig are linearly independent real vectors
in an n-dimensional space. A lattice can be characterized by a sampling matrix

whose columns are the faig vectors. RI will denote the integer lattice.

Resampling Matrix: A resampling matrix is a non-singular square integer matrix

that maps RI into itself.

27

Lattice and Matrix Theory

Sublattice: A sublattice is a lattice which is contained within a larger lattice. In this

chapter, we will only consider sublattices of the integer lattice RI . A sublattice

associated with the resampling matrix S is de�ned as the range of S:

sublattice(S) � fS n j n 2 RIg

Common Sublattice: Given three lattices A, B, and C, if A is a sublattice of B
and A is also a sublattice of C, then A is called a common sublattice of B and

C.

Greatest Common Sublattice: The greatest common sublattice is the union of all

common sublattices.

Cosets and Coset Vectors: A coset is obtained by simply shifting a sublattice by

an integer vector, k. Any vector from the origin to a point on a coset is a coset

vector. There are an in�nite number of coset vectors.

Distinct Coset Vectors: The distinct coset vectors associated with the resampling

matrix S are the jdetSj integer vectors that lie within the fundamental paral-

lelepiped (FPD) of S, denoted by

FPD(S) = fSx 2 RI j 0 � xi < 1g

where xi is the ith element of x. The distinct coset vectors provide a convenient

way to enumerate a block of samples for resampling. For example, in one-

dimensional downsampling (upsampling) by a factor of N , the distinct coset

vectors are the indices 0 : : : N �1 of each block of input (output) samples being

deleted (inserted).

The following Theorem and Corollary will be helpful in proving a later result.

The proof is omitted here because it can be found in a variety of texts and papers on

lattice theory [6, 57].

28

Lattice and Matrix Theory

Theorem 1: The sublattice associated with a resampling matrix A con-

tains the sublattice associated with the resampling matrix B if and only

if B = AC where C is also a resampling matrix.

Corollary 1.1: The sublattice associated with a resampling matrix A

is equivalent to the sublattice associated with the resampling matrix B if

and only if B = AQ where Q is a resampling matrix such that jdetQj = 1.

Corollary 1.1 is true because multiplying on the right by Q such that jdetQj = 1

does not alter the coset vectors. However, multiplying on the left by such a matrix

shu�es the coset vectors which in turn alters the shape of the sublattice.

3.1.2 Uniform Resampling of Lattices

The fundamental building blocks of multirate systems are the dual operations of

upsampling and downsampling.

Upsampling

De�nition: An upsampler is characterized by a resampling matrix L

called the upsampling matrix. The upsampling operation with input x[n]

and output xu[n] is de�ned as

xu[n] =

8><
>:

x[L�1n] if L�1n 2 RI

0 otherwise
(3:2)

and is denoted by " L or "n L or "L;n.

An upsampler maps the input signal, x[n], de�ned on RI , to the signal xu[n] which

is also de�ned on RI . The values of x[n] are mapped to locations in xu[n] which

are on the sublattice(L). All the values of samples of xu[n] not on the sublattice(L)

are set to zero. The multidimensional Fourier transform (which is de�ned in [53])

relationship for an upsampler is [53, 59]

Xu(!) = X(LT!) (3:3)

29

Lattice and Matrix Theory

where ! is a vector of the discrete-time frequency variables. In multiple dimensions, a

discrete-time frequency response X(!) is periodic with period 2� in each discrete-time

frequency variable:

X(!) = X(! + 2�N r) 8 r

where r is an integer vector and N is an integer periodicity matrix. The upsampler

maps the periodicity by LT , so if the upsampling matrix in non-rectangular, then the

periodicity of the output frequency domain would be non-separable. The sampling

density decreases by a factor of jdetLj, the upsampling factor.

Downsampling

De�nition: A downsampler is characterized by a resampling matrix

M called the downsampling matrix. The downsampling operation, with

input x[n] and output xd[n], is de�ned as

xd[n] = x[Mn] (3:4)

and is denoted by #M or #n M or #M;n.

A downsampler maps the input signal x[n] to the output signal xd[n] by discarding

samples of x[n] that do not lie on sublattice(M) and then compacts sublattice(M)

onto RI . Downsampling introduces aliasing and increases the sampling density by a

factor of jdetM j, the downsampling factor.

The equivalent input/output Fourier transform relationship is

Xd(!) =
1

jdetM j
jdetM j� 1X

i=0

X
�
(MT)�1(! � 2�ki)

�
(3:5)

where ! is the vector of discrete-time frequency variables and ki is a distinct coset

vector of M . Note that k0 is the zero vector (Section 3.3.1 shows how to compute

distinct coset vectors). The term 2�(MT)�1ki (for i 6= 0) is called an aliasing vector.

Aliasing vectors are periodic with a period of 2� in each dimension. A normalized

aliasing vector is an aliasing vector with the 2� term removed so it is periodic with

period 1 in each dimension.

30

Lattice and Matrix Theory

3.1.3 Regular Unimodular Matrices

In one dimension, upsampling or downsampling by a factor of one either has no

e�ect on the data (resampling by +1) or reverses the data in time (resampling by

�1). Resampling factors of one are, however, very useful in higher dimensions. They

correspond to resampling matrices with determinants of�1, called regular unimodular

resampling matrices [60].

Unimodular Matrix: A unimodular matrix is a matrix with determinant of 0, +1

or �1.

Regular Unimodular Matrix: A regular unimodular matrix is a matrix with a

determinant of +1 or �1. The inverse of a regular unimodular matrix is also a

regular unimodular matrix.

Regular Unimodular Resampling Matrix: A regular unimodular resampling ma-

trix is a regular unimodular matrix with integer components.

From the input/output relationships (3.2) and (3.4) for upsamplers and downsam-

plers, resampling by a regular unimodular matrix does not change the sampling den-

sity but does rearrange the input samples. This permutation of input samples is an

essential step in decomposing upsampling and downsampling operations into separa-

ble form. Since samples are neither deleted nor added when resampling by a regular

unimodular matrix, upsampling by such a matrix is equivalent to downsampling by

its inverse and vice-versa.

3.1.4 Decomposing A Resampling Matrix Into Smith Form

As mentioned in the introduction, it is often desirable to express a multidimensional

multirate operation in separable or decoupled form. One approach is to decompose

the resampling matrix underlying the operation. The Smith form of an m�n integer

matrix S is the matrix product U�V , where U and V are square regular unimodular

31

Lattice and Matrix Theory

resampling matrices (m � m and n � n, respectively) and � is an m � n diagonal

matrix whose diagonal elements are non-zero integers [6, 59, 60, 61]. Figure 3.1 shows

the U , �, and V matrices at each step in the computation of the Smith form. In the

�rst iteration, the element smallest in absolute value is pivoted to the (1; 1) entry

and all elements in the �rst column except the diagonal entry are reduced modulo

the pivot. When all the entries in the �rst column other than the diagonal are zero,

the process continues with the second column. The �rst column is left alone, and the

next pivot is found and moved to the (2; 2) entry. The process continues down the

diagonal until the integer matrix has been diagonalized.

For Smith forms of resampling matrices, all component matrices are square and

have the same dimension. By decomposing a downsampling matrixM into its Smith

form UM�MVM , the downsampling operation becomes equivalent to a shu�ing of the

input data by UM followed by a separable downsampling by �M and a reshu�ing of

the result by VM . A similar interpretation holds for an upsampling operation.

The following properties hold for the Smith form component matrices U , �, and

V of a resampling matrix S:

1. If S is diagonal, then a valid choice for U and V is the identity matrix.

2. If S is diagonal, then another choice for U is a permutation matrix. V must

permute the columns in the same way that U permutes the rows, so V = U�1.

3. When U = V �1, which occurs rarely for non-diagonal resampling matrices, the

Smith form corresponds to an eigendecomposition yielding integer eigenvalues

(the diagonal elements of �) with eigenvector matrix U .

4. If S is symmetric, then U = V T .

5. jdetSj = jdet �j.

Because of the last property, the absolute values of the diagonal elements of � are

integer factors of the absolute value of the determinant of S. If jdetSj is a prime

32

Lattice and Matrix Theory

{u, d, v} =
 SmithNormalForm[resmat,
 Dialogue -> True]

1 0 33 24 1 0

0 1 27 21 0 1

 pivot location = {2, 2}

1 0 21 27 1 0

0 1 24 33 0 1

modulo reduction by pivot (21)

1 1 21 6 1 1

1 0 3 3 1 0

 pivot location = {2, 1}

1 1 3 3 1 1

1 0 21 6 1 0

modulo reduction by pivot (3)

8 1 3 0 2 1

7 1 0 -15 1 0

{{{8, 1}, {7, 1}}, {{3, 0}, {0, -15}},

 {{2, 1}, {1, 0}}}

Figure 3.1: Iterative Algorithm in the MDSPPs to Compute the Smith Form

The original resampling matrix is the middle matrix in the �rst
two lines of dialogue, i.e. resmat = ff33, 24g, f27, 21gg.

33

Lattice and Matrix Theory

S =

2
64 736 3060 1016
256 864 308
424 1068 428

3
75

Smith
Form

2
64�982 �7 �5
�421 �3 �2
�841 �6 �4

3
75

2
64�4 0 0
0 �180 0
0 0 24

3
75

2
64 22 165 47
�70 �527 �150
�21 �158 �45

3
75

Smith
Canonical
Form

2
64 982 175 12
421 73 5
841 146 10

3
75

2
64 4 0 0
0 12 0
0 0 360

3
75

2
64 22 165 47
�1092 �8221 �2340
511 3847 1095

3
75

Alternate
Smith
Form

2
64 14 5 3
�1 11 11
�7 �3 �2

3
75

2
64 20 0 0
0 24 0
0 0 36

3
75

2
64 �884 �2901 �1045
5271 17311 6234
�3558 �11685 �4208

3
75

Figure 3.2: Examples of Di�erent Smith Forms

number, then one diagonal element of � must be equal to �detS and the other

diagonal elements must be equal to �1.
The Smith form of a matrix is not unique. Figure 3.2 shows three di�erent Smith

forms for the same resampling matrix. Smith form and Smith canonical form algo-

rithms decompose m� n integer matrices in O(s4) and O(s5) elementary arithmetic

operations, respectively, where s = m + n + log kSk1 such that kSk1 = max
i; j
jSi;jj

[60, 62]. (This algorithm analysis assumes that the intermediate integral calculations

�t into the machine's integer format.) The Smith canonical form, in which each di-

agonal element of the � matrix is a factor of the next diagonal element, is crucial

for an e�cient implementation of the multidimensional DFT [6]. For the purposes of

simplifying and rewriting multidimensional multirate structures, however, the rules

are independent of the Smith form algorithm used.

34

Lattice and Matrix Theory

3.1.5 Finding Common Resampling Matrix Factors

Because the product of resampling matrices does not always commute, resampling

matrices have left and right matrix factors as well as left and right matrix multiples

[60, 63]. If three resampling matrices A, C, and D exist such that A = CD, then

� D is called a right divisor (factor) of A,

� C is called a left divisor (factor) of A,

� A is called a left multiple of D, and

� A is called a right multiple of C.

Note that divisor is the term used in the mathematical literature, but for this thesis,

factor is usually more descriptive.

For multidimensional multirate structures, a usual operation is to �nd a great-

est common matrix factor and a least common matrix multiple of two resampling

matrices. The common right multiple of two matrices A and B is C when

1. C is a right multiple of A, i.e. C = AR for some resampling matrix R, and

2. C is a right multiple of B, i.e. C = BS for some resampling matrix S.

De�nition: The least common right multiple (LCRM) of A and B is a

right multiple whose determinant is less than or equal to the determinants

of all other right multiples of A and B in absolute value.

The LCRM of two matrices is unique only to within a multiplication on the right by

a regular unimodular resampling matrix. Associated with the LCRM is the greatest

common left divisor (GCLD). A similar de�nition holds for the least common left

multiple (LCLM) and its associated greatest common right divisor (GCRD).

35

Lattice and Matrix Theory

Computing Matrix Factors and Matrix Multiples

The LCRM/GCLD and the LCLM/GCRD of two matrices can be determined nu-

merically. A method for constructing the LCRM of two n � n non-singular matrices

A and B [62, 63] is outlined here. First, form the 2n � 2n matrix

2
64 A B

0 0

3
75

where 0 denotes an n � n matrix of all zero entries. Then, by using \integral"

Gaussian elimination operations, build a regular unimodular square integer matrix

(regular unimodular is de�ned in Section 3.1.3) X of order 2n such that

2
64 A B

0 0

3
75
2
64 X11 X12

X21 X22

3
75 =

2
64 H 0

0 0

3
75

X maps the matrix form formed by concatenating A and B into Hermite normal

(lower triangular) form. From the above matrix equation,

0 = AX12 +BX22 (3.6)

C = AX12 = �BX22 (3.7)

Here, C is the LCRM(A;B) andH is the GCLD(A;B). A dual algorithm can simulta-

neously �nd the LCLM and GCRD. For two n�nmatricesA and B, these algorithms

require O(s3) elementary arithmetic operations where s = n+ log kAk1 + log kBk1
such that kSk1 = max

i; j
jSi;jj [62]. The LCRM, GCLD, LCLM, and GCRD routines

in the MDSPPs bear the same name, e.g. LCRM and so forth.

Relationship Between Matrix Factors and Lattices

Associated with the LCRM is the greatest common left divisor. For example, the

least common multiple of 2 and 3 is 6 but the greatest common divisor of 2 and 3 is

one. Similarly, the LCRM of A and B could be ABV (where V is a regular unimod-

ular matrix) so the greatest common left divisor is the identity matrix. This is the

36

Resampling Operations in Cascade

multidimensional analog of relative primeness, which is useful for generalizing com-

mutativity conditions for an up/downsampler in cascade because it relates to �nding

the greatest common sublattice of two lattices associated with the up/downsampling

matrices:

Theorem 2: If C = LCRM(A;B), then sublattice(C) equals the greatest

common sublattice of sublattice(A) and sublattice(B).

Proof: Since C is the LCRM(A;B), C = AR = BS for some resampling

matrices R and S. Now applying Theorem 1, we see that sublattice(C) is

contained in sublattice(A) and sublattice(B). For every matrix G that is

a common right multiple of A and B and C, sublattice(G) is contained in

sublattice(A), sublattice(B), and sublattice(C). Now, since the greatest

common sublattice of sublattice(A) and sublattice(B) contains all the

common sublattices associated with A and B, the proof is complete.

3.2 Resampling Operations in Cascade

In the design of multidimensional multirate �lter banks, a fundamental understanding

of the tandem connections of upsamplers and downsamplers is often desirable. These

properties are already well known for one-dimensional systems [50, 64, 65, 66]. In

this section, we simply present the fundamental interconnections of interest. The

remaining sections of this chapter develop conditions for simplifying and rearranging

these operations.

The simplest interconnection to analyze is upsampling by S followed by down-

sampling by S. Based on the time domain equations, this tandem processing has no

e�ect on the input signal since S�1S = I,

As mentioned in the introduction, resampling matrices do not generally com-

mute. Upsampling by L1 followed by upsampling by L2 is equivalent to upsampling by

37

Resampling Operations in Cascade

- - - - -" L0 " K # K #M 0

(a)

- - -#M 0" L0

(b)

Figure 3.3: Equivalent Structures for " L = KL0 Followed by #M = KM 0

L2L1 because according to equation (3.2), it is the inverse of the upsampling matrix

(L2L1)
�1 = L�1

1 L�1
2

that determines how the samples from the input signal are mapped to the output

signal (so the order of operations is switched). It is also easy to prove that down-

sampling by M1 followed by downsampling by M2 is equivalent to downsampling by

M1M2. Note that in general, the cascade of two upsamplers (or two downsamplers) is

not commutative. They are commutative if and only if the matrix products commute,

i.e. L1L2 = L2L1 for upsamplers or M1M2 =M2M1 for downsamplers.

Because resampling matrices do not commute, resampling matrices have left and

right matrix factors. In one dimension, the common factors in an up/downsampling

cascade can be removed. In higher dimensions, this condition can be de�ned in

terms of common left matrix factors. Consider the system shown in Figure 3.3 which

downsamples byM = KM 0 after upsampling by L = K L0. Since " KL0 is equivalent

to " L0 followed by " K, we see that the system in Figure 3.3a can be simpli�ed to the

system in Figure 3.3b. In other words, if we can factor the two resampling matrices

38

The Role of Smith Form Matrices

such that they share a common matrix factor on the left, then that common factor

can be removed without changing the overall system response.

3.3 The Role of Smith Form Matrices

The Smith form decomposition of a matrix has been useful in many aspects of mul-

tidimensional signal processing including the design of multidimensional multirate

�lter banks [59, 61, 67] and the design of multidimensional DFT and FFT algorithms

[6]. Furthermore, the Smith form decomposition has been used in other areas of

electrical engineering including control theory for linear systems [39]. In this sec-

tion, we present new applications of the Smith form decomposition. The �rst is the

computation of distinct coset vectors (Section 3.3.1) which can generate the aliasing

vectors associated with a downsampling matrix (see Section 3.1.2). Aliasing vectors

play a role in determining the commutativity of up/downsampler cascades in Section

3.4. The second new application of Smith forms in this section is the �nding of the

greatest common sublattice (GCS) of two lattices (Section 3.3.2). The GCS leads

to rules for simplifying cascades of resampling operations (Section 3.3.3). Later in

Section 3.4, the GCS will be key in �nding a second set of commutativity conditions

for up/downsamplers in cascade.

3.3.1 Computation of Coset Vectors

The distinct coset vectors of resampling matrix S are those vectors drawn from the

origin to the points inside the fundamental parallelepiped of S (the points always

have non-negative values). In one dimension, the parallelepiped is the block of sam-

ples being reindexed. In the separable multidimensional case, S is diagonal and the

fundamental parallelepiped is a rectangular prism whose \lower left-hand" corner is

the origin and whose \upper right-hand" corner is (p1�1; p2�1; : : :) where pi = jSi;ij.
Clearly, the ease in enumerating points inside a rectangular prism simpli�es the com-

39

The Role of Smith Form Matrices

putation of the distinct coset vectors for diagonal resampling matrices.

For more general resampling matrices, it is not as easy to compute the distinct

coset vectors because it is harder to enumerate the points in the fundamental paral-

lelepiped. The following theorem, o�ered by Gardos [68], handles the case where the

resampling matrix S is the product of a regular unimodular matrix U and a diagonal

matrix �. Although the theorem states that all of the diagonal elements of � must

be positive, this actually covers the case for all integer diagonal matrices � because

V can always be adjusted so that � has only positive diagonal elements. The proof

is given in the appendix of [72].

Theorem 3: Let U be a unimodular integer matrix and � be a diagonal

matrix with all positive elements, then FPD(U�) = U FPD(�).

For a general resampling matrix S, the points inside of the fundamental paral-

lelepiped can be enumerated by �rst decomposing S into Smith form U�V . Then,

if any of the diagonal elements of � are negative, multiply � on the right and V

on the left by the diagonal matrix D such that Di;i = sgn(�i;i). As mentioned in

the beginning of this section, it is easy to calculate the distinct coset vectors for �

because it is diagonal. From Theorem 3, FPD(U�) is just the mapping of FPD(�)

by U . From Corollary 1.1, since V is unimodular, sublattice(S) = sublattice(U�), so

FPD(S) = FPD(U�) mod S = U FPD(�) mod S

Therefore, the points in the fundamental parallelepiped of S become the points in

the fundamental parallelepiped of � mapped by U modulo S:

FPD(S) = f((U l))S j l 2 FPD(�)g (3:8)

where ((�))M is vector-matrix modulo operator de�ned as

((x))M = x � M bM�1xc

such that the b�c operator takes the
oor of every component of the vector argument.

40

The Role of Smith Form Matrices

For a given n � n resampling matrix S, computing (3.8) requires calculating

S�1 and U . With s = n + log kSk1, computing (3.8) requires one Smith form

decomposition (O(s4)) plus one matrix inversion (O(n3)) plus three matrix-vector

operations, one integer vector subtraction, and one vector
oor operation per point of

the fundamental parallelepiped of �. Since the fundamental parallelepiped contains

jdetSj points, equation (3.8) requires O(s4 + n3 + n2jdetSj) multiplications plus
O(n2jdetSj)
oor operations. When integral resampling occurs in every dimension,

i.e. when none of the diagonal elements are �1, the n3 term can be ignored because

jdetSj � 2n � n, so the matrix inversion operation is \free". The n4 term can

only be ignored when jdetSj � n2 which is satis�ed when the number of dimensions

rises above 7 and integral resampling occurs in every dimension. For image and video

processing, the number of dimensions n is 2 or 3 so the n4 term is signi�cant. E�cient

algorithms to compute cosets that do not use the Smith form are discussed in [69].

3.3.2 Computing the Greatest Common Sublattice

The least common right multiple provides one way to compute the greatest com-

mon sublattice (GCS) associated with two resampling matrices (see Section 3.1.5).

Sometimes, the Smith form decomposition can be used to �nd the GCS.

The GCS associated with two diagonal resampling matrices is trivial to compute.

Namely, given two diagonal resampling matrices �1 and �2, compute a new diagonal

matrix � whose ith diagonal element is the greatest common divisor of the ith diag-

onal element of �1 and �2. It is easily veri�ed that the greatest common sublattice

associated with �1 and �2 is simply the sublattice associated with the resampling

matrix �0
1�

0
2 where �1 = ��0

1 and �2 = ��0
2.

For non-diagonal resampling matrices S1 and S2, the GCS can be found when

the two resampling matrices share a common left regular unimodular matrix factor

U . If the decompositions share a common left factor U = U1 = U2, then according

to Corollary 1.1 �nding the GCS associated with S1 and S2 is equivalent to �nding

41

The Role of Smith Form Matrices

the GCS associated with S0
1 = U�1 and S0

2 = U�2. This is easily done by noting

that U is a one-to-one and onto linear operator. Hence, one can simply compute the

GCS associated with the resampling matrices �1 and �2 and then apply the inverse

mapping U�1 to generate the GCS associated with S1 and S2.

In order to compute the GCS using this approach, we introduce the following

algorithm to decompose two resampling matrices S1 and S2 into similar Smith forms:

1. Find a Smith form of S1 = U1�1V1.

2. Set U2 = U1

3. Find �2 and V2 from the relationship U�1
1 S2 = �2V2

(a) [�2]i;i is the gcd of the elements of row i of the matrix U�1
1 S2.

(b) V2 can be computed using V2 = ��1
2

h
U�1
1 S2

i
.

4. S1 and S2 share a common U factor if V2 is a regular unimodular resampling

matrix

Any Smith form algorithm can be used in the �rst step. For n�n resampling matrices

S1 and S2, the algorithm requires O ([n+ log kSk1]4 + n3) elementary arithmetic

operations and O(n2) gcd operations. The O(n3) term arises from the computation

of U�1
1 S2. Using a dual method, a Smith form decomposition can be generated

for V1 = V2. In the MDSPPs, the routines SmithFormSameU and SmithFormSameV

implement these two algorithms.

3.3.3 Simpli�cation of Resamplers in Cascade

Armed with the ability to compute Smith forms and the GCS, we address the issue

of simplying and rearranging upsamplers and downsamplers in cascade. Consider the

up/downsampler cascade in Figure 3.4a, where we have expressed M = UM�MVM

and L = UL�LVL in their Smith forms. If the decomposition can be performed using

42

Commutativity of Resamplers in Cascade

the same left unimodular matrix UM = UL = U (see Section 3.3.2), then it is trivial

to remove a factor of U from each operator and the resulting system is shown in Fig-

ure 3.4b. Now, downsampling by �M follows upsampling by �L so common factors

between the ith diagonal elements of �M and �L can be removed thereby creating

two new diagonal matrices �0
M and �0

L shown in Figure 3.4c. Since �0
L and �0

M are

coprime, upsampling by �0
L and downsampling by �0

M can be switched (Figure 3.4d).

Figure 3.4e combines the remaining four operations into two by using the fact that

downsampling by a regular unimodular matrix is equivalent to upsampling by its

inverse and vice-versa (Section 3.1.3). Hence, Figure 3.4 shows that sometimes the

operations in an up/downsampler cascade can be switched by modifying the resam-

pling matrices. In a similar way, Figure 3.5 shows that the cascade of a downsampler

followed by an upsampler can sometimes be simpli�ed and even rearranged.

3.4 Commutativity of Resamplers in Cascade

We now derive two equivalent sets of conditions for the commutativity of downsam-

pling byM and upsampling by L in cascade. In the frequency domain, the conditions

are derived by comparing the frequency response of an up/downsampler cascade with

that of a down/upsampler cascade (see equations (3.3) and (3.5) in Section 3.1.2).

For the two-dimensional case, the conditions are [70]:

FD1 The products of the resampling matrices commute, LM =ML, and

FD2 The two sets of normalized aliasing vectorsNup=down andNdown=up are equivalent

such that

Nup=down = f
h
MT

i�1
ki; i = 0 : : : jdetM j � 1g

Ndown=up = fLT
h
MT

i�1
ki; i = 0 : : : jdetM j � 1g

These conditions were derived without reference to the Smith form decomposition.

The Smith form decomposition of the downsampling matrix M enables the enumer-

43

Commutativity of Resamplers in Cascade

VM# �M# UM" UL" �L" VL -------

(a) Cascade in Smith form

VM# �M" �L" VL -----

(b) Simpli�ed cascade if UM = UL

VM# �0
M" �0

L" VL -----

(c) Simpli�ed cascade from (b) with common factors removed

VM" �0
L# �0

M" VL -----

(d) Reversing the order of operations in (c) since �0

L
and �0

M
are

coprime

-" V �1
M �0

L
-# V �1

L �0
M

-

(e) Combining operations in (d) so that downsampling comes �rst

Figure 3.4: Five Equivalent Forms of an Up/downsampler Cascade

44

Commutativity of Resamplers in Cascade

" UL" �L" VL# VM# �M# UM

(a) Cascade in Smith Form

" UL" �L# �M# UM

(b) Simpli�ed cascade if VM = VL

" UL# �M" �L# UM

(c) Reversing order of operations in (b) if �M and �L are coprime

-# �MU
�1
L

-" �LU
�1
M

-

(d) Combining operations in (c)

Figure 3.5: Four Equivalent Forms of a Down/upsampler Cascade

45

Commutativity of Resamplers in Cascade

ation of the coset vectors ki (see Section 3.3.1); for an n � n matrix M , generating

the coset vectors requires O ([n+ log kMk1]4 + n3 + n2jdetM j) multiplications plus
O(n2jdetM j)
oor operations. The coset vectors can then be used to calculate the

two sets of normalized aliasing vectors Nup=down and Ndown=up each having jdetM j
elements. If the two sets are identical, then the cascade commutes. Thus, the Smith

form is the key that unlocks the commutativity conditions (based on equivalence in

the frequency domain) for the general multidimensional case.

In the time domain, we derive the conditions by comparing the time response of

an up/downsampler cascade with that of a down/upsampler cascade (see equations

(3.2) and (3.4) in Section 3.1.2). We discovered the time domain conditions [71, 72]

in parallel with [52]. The two resampling operations are commutative if and only if

TD1 ML = LM , and

TD2 LCRM(M;L) =MLV where V is a regular unimodular matrix.

There are at least two ways to test the last condition TD2. The �rst is to see if the

matrix product of the inverse of (ML) and LCRM(M;L) yields a regular unimodular

integer matrix. A second method checks to see if the greatest common left divisor

(GCLD) of M and L is a regular unimodular matrix, which is faster because it does

not require the matrix inversion of the �rst method. In either method, the LCRM

of n � n matrices M and L requires O(s3) elementary arithmetic operations where

s = n+ log kMk1 + log kLk1 [62].

A time-domain and a frequency-domain analysis leads to similar pairs of commu-

tativity conditions for an up/downsampler cascade, but the time-domain conditions

require far fewer computations. Commutativity of matrix products, the �rst condi-

tion, is easy to check because it only requires O(n3) additions and multiplications for

n� n resampling matrices. Of the second commutativity conditions TD2 and FD2,

TD2 (the one based on the time domain) is much simpler to check because the order

of computations is independent of the determinant of the downsampling matrix and

varies with n3 instead of n4.

46

A Comprehensive Set of Rules

3.5 A Comprehensive Set of Rules

In this section, we collect many rules for multidimensional multirate signal processing.

The rules are presented as �gures. Figures 3.6 and 3.7 are generalizations of Figures

3.8 and 3.9 in [49], and Figure 3.8 is a generalization of the interaction between LTI

�lters and up/downsamplers discussed in Section 3.4 of [49]. Figure 3.9 summarizes

the rules for cascades of resamplers from Section 3.2 which are adaptations of the

identities in Figure 3.10 of [49].

The one-dimensional rules governing the commutativity of resamplers in cascade

rely on the fact that integer multiplication commutes and that factoring is complete

over the integers. In one dimension, two upsamplers (or two downsamplers) in cas-

cade always commute, but in multiple dimensions, the operations can be switched

only if the product of the two resampling matrices commutes, as shown in Figure

3.10a and 3.10b. An up/downsampler in one dimension commutes if the resampling

factors are relatively prime, i.e. if the least common multiple is the product of the

two factors, so this can be easily extended to separable up/downsampling where the

resampling matrices are diagonal (Figure 3.10c). For non-separable resampling, the

two conditions for commutativity derived in Section 3.4 are that the product of the

resampling matrices commutes and that the least common right multiple of the two

resampling matrices equals the product of the two matrices and a regular unimodular

matrix (Figure 3.10d). An alternate second condition is that the two sets of aliasing

vectors, one for the cascade and one for the commuted cascade, are equivalent (Figure

3.10e). The time-domain conditions, however, require far fewer computations.

47

A Comprehensive Set of Rules

s #M s -

z�n0 s () s z�M n
0

- s #M s

(a) Delay after downsampling

s z�n0
- s #M s

()
s #M s -

z�M
�1 n0

s

(b) Delay before downsampling

s #M s i�

�(n)

s
()

s i�

"M

�(n)

s #M s

(c) Modulation after downsampling

s i�

�(n)

s #M s
()

s #M s i�

#M

�(n)

s

(d) Modulation before downsampling

Figure 3.6: Identities for Downsamplers

48

A Comprehensive Set of Rules

s " L s -

z�n0 s () s z�L
�1 n

0

- s " L s

(a) Delay after upsampling

s z�n0
- s " L s

()
s " L s -

z�Ln0 s

(b) Delay before upsampling

s " L s i�

�(n)

s
()

s i�

L

�(n)

s " L s

(c) Modulation after upsampling

s i�

�(n)

s " L s
()

s " L s i�

" L

�(n)

s

(d) Modulation before upsampling

Figure 3.7: Identities for Upsamplers

49

A Comprehensive Set of Rules

s H(zM n
0) s #M s

()
s #M s H(zn0) s

(a) Filtering before downsampling [52, 61]

s " L s H(zLn0) s
()

s H(zn0) s " L s

(b) Filtering after upsampling [52, 61]

Figure 3.8: Interactions between Up/downsamplers and LTI Filters

In multidimensional signal processing, one typically encounters situations that

do not arise in one dimension. This is the case for decomposing matrices into

Smith form. The properties of resampling operations expressed in Smith form (with

component diagonal and regular unimodular matrices) are summarized in Figure

3.5. Figure 3.12 shows how the Smith form can be used to remove redundancy (if

any) from up/downsampler cascades. Figure 3.13 identi�es the conditions for which

up/downsampler cascades do not commute but yet the operations can be switched

by altering the resampling matrices.

The last �gure, Figure 3.14, shows what happens when a shifter occurs between

an upsampler and a downsampler. Remembering that one-dimensional downsampling

in terms of blocks of samples is analogous to multidimensional downsampling in terms

of fundamental parallelepipeds of samples, the shifter will either shift samples o� of

the downsampling lattice (Figure 3.14a) or it will delay the incoming samples an inte-

ger number of parallelepipeds (Figure 3.14b). Figure 3.14c shows a way to decompose

a shift operation that exists between an upsampler and downsampler in cascade. In

50

A Comprehensive Set of Rules

s " S s # S s
()

s s

(a) Up/downsampling by the same matrix

s # S s " S s
()

s i�

p(n) =

(
1 for S�1n 2 RI

0 otherwise

s

(b) Down/upsampling by the same matrix

s #M1
s #M2

s () s #M1M2
s

(c) Cascade of downsamplers

s " L1
s " L2

s () s " L2L1
s

(d) Cascade of upsamplers

s " L =ML0 s #M s
()

s " L0 s

(e) If L0 =M�1L is a non-singular integer matrix

Figure 3.9: Identities for Cascades of Upsamplers and Downsamplers

51

A Comprehensive Set of Rules

s #M1
s #M2

s
()

s #M2
s #M1

s

(a) if M1M2 =M2M1 (also reported in [52])

s " L1
s " L2

s
()

s " L2
s " L1

s

(b) if L1L2 = L2L1 (also reported in [52])

s " �L
s # �M

s
()

s # �M
s " �L

s

(c)
if �L and �M are diagonal resampling matrices
whose corresponding elements are relatively prime

s " L s #M s
()

s #M s " L s

(d)

if LM = ML and LCRM(L;M) = LMV such

that V is a regular unimodular resampling matrix
(see Section 3.4; independently reported in [52])

s " L s #M s
()

s #M s " L s

(e)
if LM = ML and the two sets of aliasing vectors
are equivalent (see Section 3.4; adapted from [70])

Figure 3.10: Commutativity of Cascades of Upsamplers and Downsamplers

52

A Comprehensive Set of Rules

s " L = UL�LVL s () s " VL s " �L
s " UL

s

(a) The Smith form of an upsampler

s #M = UM�MVM s () s # UM
s # �M

s # VM s

(b) The Smith form of a downsampler

s " U s
()

s # U�1 s s # U s
()

s " U�1 s

(c) Resampling by regular unimodular matrices

s " U s # V s
()

s " V �1U s
()

s # U�1V s

(d) Up/downsampling by regular unimodular matrices

s # V s " U s
()

s # V U�1 s
()

s " UV �1 s

(e) Down/upsampling by regular unimodular matrices

Figure 3.11: Fundamental Identities Based on the Smith Form Decomposition

The Smith form decomposition rewrites a resampling matrix into
a matrix product U�V where U and V are regular unimodular
matrices and � is a diagonal matrix (see Section 3.3).

53

A Comprehensive Set of Rules

s " �L
s # �M

s
()

s # �0
L

s " �0
M

s

(a)
If �L and �M are diagonal resampling matrices, then common
factors between each corresponding pair of diagonal elements can
be removed.

s # UM�MV s " UL�LV s
()

s # UM�M
s " UL�L

s

(b)

If the resampling matrices can be decomposed into Smith form
using the same right unimodular matrix, then that resampling op-
eration cancels (see Section 3.3.3).

s " U�LVL s # U�MVM s
()

s " �0
LVL s # �0

MVM s

(c)

If the resampling matrices can be decomposed into Smith form
using the same left unimodular matrix, then that resampling op-
eration cancels as well as any common factors between each corre-
sponding pair of diagonal elements (see Section 3.3.3).

Figure 3.12: Removing Redundancy in Cascades of Upsamplers and Downsamplers

54

A Comprehensive Set of Rules

one dimension, given two non-zero integers a and b, a family of solutions for integers

� and � in � a + � b = gcd(a; b) can always be found. An e�cient algorithm to

�nd � and � �rst converts the equation to a Bezout identity by dividing out gcd(a; b)

to produce �â + �b̂ = 1 and then enumerates either � from 0 to jb̂j � 1 if jb̂j < jâj
or � from 0 to jâj � 1 otherwise until an integral solution is found for the other

variable. (The Bezout identity, solved by the BezoutNumbers routine in the MDSPPs,

plays a key role in transforming Smith forms into canonical form [60].) In multiple

dimensions, given two square non-singular integer matrices M and L, a family of

integer vectors nM and nL can always be found to satisfy M nM + LnL = n0. First,

multiply both sides of this equation on the left by the inverse GCRD(M;L) to convert

it into a multidimensional Bezout identity, M̂ nM + L̂nL = GCRD�1(M;L) n0.

Next, enumerate either the coset vectors of L̂ as the candidates for nM if jdetLj <
jdetM j or the coset vectors of M as the candidates for nL otherwise until an integer

vector solution is found for the other variable. Like the one-dimensional Bezout

identity, the answers for nM and nL are periodic. The family of solutions can be

obtained by shifting nM by L times some integer vector l and by shifting nL by

�M l. In the MDSPPs, the EuclidFactors routine �nds nM and nL in the relation

M nM + LnL = n0 for relatively primeM and L.

For completeness, we include the polyphase decomposition of a multidimensional

rational rate changer [51, 52]. Like the one-dimensional version [49], the polyphase

decomposition resamples the �lter coe�cients to create a more e�cient implemen-

tation of the rate changer. Just as in the one-dimensional case, the polyphase form

exists whenever the upsampling and downsampling matrices are relatively prime [52].

The polyphase decomposition is diagramed in Figure 3.15.

55

A Comprehensive Set of Rules

s # UM�MV s " UL�LV s ()

s " �LU
�1
M

s # �MU
�1
L

s

(a) Switching operations in a non-commutable down/upsampler cascade if the diagonal
matrices �M and �L are relatively prime

s " U�LVL s # U�MVM s ()

s # V �1
L �0

M
s " V �1

M �0
L

s

(b) Switching operations in a non-commutable down/upsampler cascade by removing the
common factors of the corresponding diagonal elements of �L and �M to produce �0

L
and

�0

M
.

Figure 3.13: Switching Operations in Non-commutable Cascades

56

A Comprehensive Set of Rules

s " S s zn0 s # S s () 0

(a) Up/downsampling by S when the shift vector n0 62 sublattice(S) or equivalently when
S�1

n0 is not an integer vector

s " S s zn0 s # S s
()

s z
S�1n0 s

(b) Up/downsampling by S when the shift vector n0 2 sublattice(S) or equivalently when
S�1

n0 is an integer vector

s " L s zn0 s #M s
()

s znL s " L s #M s znM s

(c) For resampling matrices L and M, n0 can always be rewritten as n0 = LnL +MnM

using a form of Euclid's algorithm or equivalently by converting the equation to a Bezout
identity

Figure 3.14: Interaction between Up/downsampler Cascades and Shifters

57

A Comprehensive Set of Rules

- " L - H(z) - #M -

(a) Multidimensional Rational Decimation System

- " L -
z
�k

0
- #M - E0(z) -

-
z
�k

1
- #M - E1(z) -

-
z
�k

2
- #M - E2(z) -

-

(b) Rewriting the Downsampling Stage

z
�k

0
z
�Lk

02
-

z
�Mk

01

z
�k

1 () z
�Lk

12
-

z
�Mk

11

z
�k

2
z
�Lk

22
-

z
�Mk

21

(c) Rewriting the Shift Operations
(if L and M are relatively prime on
the left)

-
z
�k02 - " L - #M - E0(z) -

z
�k01 -

-
z
�k02 - " L - #M - E1(z) -

z
�k01 -

-
z
�k02 - " L - #M - E2(z) -

z
�k01 -

-

(d) Moving the Shift Operations Outside of the
Up/Downsamplers

" L - #M

()

#M - " L

(e) Switching the Order of the
Up/Downsamplers (if LM = ML

and L and M are relatively prime)

-
z
�k02 - #M - E0;0(z) - " L -

z
j0

- E0;1(z) - " L -
z
j1

-
z
�k01 -

-
z
�k12 - #M - E1;0(z) - " L -

z
j0

- E1;1(z) - " L -
z
j1

-
z
�k11 -

-
z
�k22 - #M - E2;0(z) - " L -

z
j0

- E2;1(z) - " L -
z
j1

-
z
�k21 -

-

(f) Final Polyphase Form

Figure 3.15: Polyphase Implementations of Rational Decimation Systems

In the end, all �ltering operations are performed at the lowest
sampling rate in the system (adapted from [51]).

58

Summary

3.6 Summary

As shown in Figures 3.6 through 3.14, this chapter presents original research that

generalizes the simpli�cation and rearrangement rules for one-dimensional multirate

signal processing in [49] to multiple dimensions. This chapter also generalizes two

other important one-dimensional rules to multiple dimensions| (1) the commutativ-

ity of an upsampler and downsampler in cascade, and (2) pulling out the shift oper-

ation in the cascade of an upsampler, shifter, and downsampler. Vaidyanathan and

Chen [52, 61] independently derived these two rules in multiple dimensions and then

applied them to �nd polyphase implementations of multidimensional rate changers

(i.e. rational decimation systems). We include their polyphase rules for completeness.

This chapter also develops the algorithms necessary to evaluate the conditions

of the rules in Figures 3.9, 3.10, 3.12, and 3.13. One of new algorithms computes

the greatest common sublattice by computing common left matrix factors using on

Smith form decompositions. Its dual, which �nds common right matrix factors, is

useful in removing redundant operations and switching operations in non-commutable

cascades. The new algorithm underlying Figure 3.10e uses the Smith form decompo-

sition of the downsampling matrix to compute the two sets of aliasing vectors.

All of the supporting algorithms and all of the rules in Figures 3.6 through 3.14

have been encoded in the MDSPPs. \LatticeTheory.m" contains the algorithms and

\RewriteRules.m" contains the rules. A version of \LatticeTheory.m" is available that

does not rely on other routines in the MDSPPs. Also encoded in our lattice theory

package is a family of Smith form algorithms that �nd � matrices whose diagonal

elements are as close to one another in absolute value as possible and/or minimize

the norm of either U or V [27]. Other researchers have used this new family of Smith

form algorithms in our algorithm to compute common left matrix factors as a part of

a procedure to design multidimensional non-uniform �lter banks [73].

59

CHAPTER 4

The Signal Processing Packages:

Implementing Linear Systems Theory in

Mathematica

The multidimensional signal processing packages (MDSPPs) [1, 2, 3] represent a sig-

ni�cant step in implementing linear systems theory in a computer algebra program

(Mathematica). Theory refers to the algebraic and other symbolic operations used in

studying the behavior of linear systems. The MDSPPs obey Mathematica's syntax

rules and follow engineering convention when possible. The MDSPPs de�ne many

new signals (Section 4.1) and systems (Section 4.2) that are missing in the core of

Mathematica. Section 4.3 and 4.4 introduce some of the plotting and symbolic abilities

of the MDSPPs. Chapter 5 covers more advanced features of the MDSPPs.

4.1 De�ning Signals

The MDSPPs de�ne the signals listed in Table 4.1. The new signals are functions that

take one argument, except for Pulse and CPulsewhich require two| the pulse length

and the variable plus the o�set (if any). One-dimensional signals require a variable

or expression to specify the domain of the signal. For example, as a function of t, the

continuous step function u�1 would take the form of Unit[-1][t] or more simply

CStep[t] which stands for \Continuous Step". The expression CStep[t-2] would

represent a step function delayed by 2 or u�1(t� 2). Signals can appear in algebraic

expressions, such as t CStep[t], which is one way to write the ramp function.

60

De�ning Signals

Object Meaning

CPulse continuous pulse:

uL(t) =

8>>>>><
>>>>>:

0 t < 0
1
2

t = 0

1 0 < t < L
1
2

t = L

0 t > L

CStep continuous step function:

u�1(t) =

8><
>:

1 t > 0
1
2

t = 0

0 t < 0

Delta Dirac delta function �(t) which has

a value of zero for t 6= 0, a value

of in�nity at t = 0, and unit area:Z 1

�1
�(t) dt = 1

Dirichlet normalized Dirichlet discrete kernel:

d[N; !] =
sin(N!=2)

N sin(!=2)
Also called the ASinc function

Impulse Kronecker delta function:

�[n] =

(
1 n = 0

0 n 6= 0

Pulse discrete pulse:

uL[n] =

8><
>:

0 n < 0

1 0 � n � L� 1

0 n � L

Sinc sinc(t) � sin(t)=t so sinc(0) = 1

Step discrete step function:

u[n] =

(
1 n � 0

0 n < 0

Unit family of functions which

includes CStep and Delta

Table 4.1: Signals Introduced by the Signal Processing Packages

61

De�ning Systems

Separable multidimensional signals are simply products of one-dimensional func-

tions. The positive quadrant for the discrete-time variables n1 and n2 would be

written as u[n1]u[n2] which is rendered as Step[n1] Step[n2] in Mathematica. Non-

separable multidimensional signals are easy to represent as well. For example, the

line impulse through the origin running at a 45 degree angle in the continuous-time

variables t1 and t2 would be written as �(t1�t2) which is rendered simply as Delta[t1

- t2] in Mathematica.

4.2 De�ning Systems

The MDSPPs de�ne the operators commonly used in signal processing but missing

in Mathematica. Table 4.2 lists the new operators and their parameters. Parameters

are side information such as shift factors, DFT lengths, and the variable(s) on which

to operate. Operators also take arguments (i.e. signals):

operator [parameter1, parameter2, : : :] [signal1, signal2, : : :]

Cascaded systems are formed by nesting operators. For example, with Times as

the built-in product operator which takes no parameters, the expression

Times[Exp[-2 I Pi t / 10], Shift[10,t][x[t]]]

represents the modulation by exp(�2j�t=10) of x(t�10) which is in turn represented

by the Shift operator (note that a space between terms denotes multiplication). All

operators in Table 4.2 represent operations in the sense that they defer evaluation

of operations until TheFunction or N is applied to them. That is, when an operator

from Table 4.2 is applied, no evaluation takes place| instead, the resulting function

is stored symbolically, until it becomes convenient to compute it explicitly.

For one-dimensional operators, a variable is a symbol, like t. Arguments other

than variables can be numbers, symbols or formulas. To indicate that the operator is

multidimensional, we use a list of variables such as {t1, t2, t3} instead of a single

62

De�ning Systems

Aliasby[sc, w] aliases a continuous function of w giving it a period of

2� / sc and divides by sc

CircularShift[n0, N, n] shifts a sequence by (n0 + n) mod N in n

CConvolve[t] continuous convolution in t

Convolve[n] discrete convolution in n

DFT[L, n, k] the L-sample (in 1-D) and the j detLj-sample (in m-D)

discrete Fourier transform of a function in n to a function

in k

DTFT[n, w] the discrete-time Fourier transform of a sequence in n to

a continuous periodic function in w

Difference[i, n] the ith backward di�erence in n

Downsample[m, n] with the downsampling factor f equal to m in 1-D or

j detmj in m-D, operator keeps the �rst sample in every

block of f samples; the sampling rate decreases by a

factor of f

FIR[n, fh0, h1, : : :g] all-zero digital �lter with �nite impulse response; in 1-

D, the weights (taps) are h0, h1, : : : and in m-D, the

weights become a m-D volume of weights

FT[t, w] continuous Fourier transform of a function of t into a

function of w

IIR[n, fa0, a1, : : :g] all-pole digital �lter with in�nite impulse response; in

1-D, the feedback coe�cients are -a1, : : : , and in m-D,

fa0, a1, : : :g becomes a m-D volume of coe�cients

Interleave[n] interleaves (combines) samples from each input function

of n into one function

InvDFT[L, k, n] inverse discrete Fourier transform (see DFT)

InvDTFT[w, n] inverse discrete-time Fourier transform (see DTFT)

InvFT[w, t] inverse continuous Fourier transform (see FT)

InvL[s, t] inverse Laplace transform (see L)

InvZ[z, n] inverse z-transform (see Z)

L[t, s] Laplace transform of a function of t

Periodic[p, v] argument is made periodic with period p with respect to

variable(s) v; in m-D, p is an integer matrix

Rev[v] reverse the function of variable v (
ip the v axis)

ScaleAxis[sc, w] scale the w axis (variable) by sc

Shift[v0, v] shift function of v by v0 points

Summation[i, ib, ie, inc] summation operator: i = ib to ie step inc

Upsample[l, n] with the upsampling factor f equal to l in 1-D or j detlj

in m-D, operator inserts f � 1 samples after each input

sample; sampling rate increases by a factor of f

Z[n, z] z-transform of a function of n

Table 4.2: New Operators (and Their Parameters) in the MDSPPs

63

Plotting Signals and Systems

variable such as t. The length of the variable list indicates the dimensionality of the

operator.

In multiple dimensions, the �rst parameter for the upsampling, downsampling,

and periodic operators becomes a square matrix, whereas all other parameters become

lists of expressions, one expression per dimension. For example, the downsample

operator requires a downsampling constant m and a symbolic variable n. In one-

dimensional downsampling, m is the integer downsampling factor and n is a symbolic

index, but for the multidimensional case, m is the integer downsampling matrix and n

is a list of symbolic indices. Regardless of the dimensionality, the form of the operator

is Downsample[m, n], and its syntax is Downsample[m, n][f], where f is a discrete

function in n.

4.3 Plotting Signals and Systems

All of the continuous-time signals introduced by the MDSPPs, except for the Dirac

delta function, can be graphed byMathematica's basic plotting command Plot. Plot,

however, will experience problems if the signal contains any of the new operators intro-

duced by the MDSPPs, or if the signal contains Dirac delta functions, or if the signal is

complex-valued. Thus, we introduce a new function called SignalPlot. SignalPlot

will �rst convert the expression into functions which can be plotted and then graphs

the real and imaginary parts of the function in solid and dashed lines, respectively.

This plotting convention for analog signals follows Bracewell [74]. SignalPlot also

plots Dirac delta functions as upward- or downward-pointing arrows. The height of

the arrows is either the area of the delta function (when $DeltaFunctionScaling is

set to Scaled) or the same height which is determined from the values of the rest of

the plot (when $DeltaFunctionScaling is set to None). For discrete-time signals,

we have introduced the function SequencePlot that only plots real-valued functions

of an integral index variable.

64

Continuous and Discrete Convolution

Both new plotting routines can plot one-dimensional and two-dimensional sig-

nals. For two-dimensional sequences, SequencePlot generates three-dimensional

graphics initially sampled at discrete indices. Sometimes, a better way to visual-

ize a two-dimensional sequence is to view it at an in�nite height above the plane of

the two independent variables, known as a density plot. A density plot, for example,

shows clearly the sampling pattern after multidimensional upsampling. For exam-

ple, Figure 4.1 shows how to use Mathematica's DensityPlot command with our

upsampling operator to illustrate the e�ect of upsampling a separable sequence by

the non-rectangular upsampling matrix

2
4 1 1

�1 1

3
5, which has an upsampling factor

of 1 � 1� (�1) � 1 = 2. First, the upsampling changes the basis of the sampling lattice

to a non-rectangular lattice so that the function becomes non-separable. Second, the

upsampling inserts zeros in a checkerboard pattern as seen by the black tiles which

represent an amplitude of zero. (This checkerboard pattern corresponds to inter-

leaving in digital video signals, and the resampling matrix involved belongs to the

family of quincunx resampling matrices.) In Figure 4.1, the white tiles represent an

amplitude of two.

4.4 Continuous and Discrete Convolution

Convolution is a key concept in linear shift-invariant systems as it describes �ltering

in the time domain. Continuous convolution of two functions, f(t) and g(t), is de�ned

as [5]

f(t) ? g(t) =
Z 1

�1
f(�) g(t� �) d�

In discrete time, the integral is replaced by summation [75]

f [n] ? g[n] =
1X

m=�1

f [m] g[n�m]

The graphical approach to computing one-dimensional convolutions
ips g in time and

slides it across f . The answer is obtained by performing the integration or summation

over those intervals where the functions overlap.

65

Continuous and Discrete Convolution

sin2D = (Sin[n1 Pi / 5] + 1) *
 (Sin[n2 Pi / 5] + 1);

DensityPlot[
 sin2D,
 {n1, -11, 11}, {n2, -11, 11},
 PlotPoints -> {23, 23},
 PlotRange -> All]

-10 -5 0 5 10

-10

-5

0

5

10

-DensityGraphics-

upMatrix = {{1, 1}, {-1, 1}};
upSignal =
 Upsample[upMatrix, {n1,n2}][sin2D];
DensityPlot[
 Evaluate[TheFunction[upSignal]],
 {n1, -11, 11}, {n2, -11, 11},
 PlotPoints -> {23, 23},
 PlotRange -> All]

-10 -5 0 5 10

-10

-5

0

5

10

-DensityGraphics-

Figure 4.1: Visualizing Two-Dimensional Sequences as Density Plots

Top views of a separable function (left) and the upsampling
of the same function by a non-rectangular matrix (right).

66

Continuous and Discrete Convolution

The MDSPPs introduce PiecewiseConvolution which performs discrete con-

volution and convolution for piecewise continuous functions. PiecewiseConvolution

accepts f and g as algebraic expressions or as lists of F-intervals. West and McClellan

[26] de�ne the F-interval as a list of three elements:

ffunction, left-endpoint, right-endpointg

F-intervals can be �nite or in�nite in extent, but when given numeric values, the right

endpoint should always be greater than the left endpoint. The function can be any

algebraic expression, e.g. a t^2. As a list of F-intervals, then, t CPulse[10, t] +

5 Delta[t - 20] becomes f ft, 0, 10g, fArea[5], 20, 20g g.
Internally, PiecewiseConvolution uses the following algorithm to compute con-

volutions [26]:

1. convert f and g to lists of F-intervals,

2. convolve each F-interval in f with each F-interval in g, and

3. simplify the result by

(a) reordering (sorting) the F-intervals and

(b) merging overlapping F-intervals (when possible).

West [26] bases the computation of the convolution of two F-intervals on the \Square

Matrix Rule" [76] which says that convolving two �nite extent intervals produces

three �nite extent intervals. We have generalized the rule to include situations where

one or more of the endpoints is in�nite as shown in Table 4.3. Since each left endpoint

in an interval can either be �1 or a number and each right endpoint in an interval

can either be a number or1, convolving two F-intervals yields 2 �2 �2 �2 = 16 possible

combinations of intervals. All of the combinations yield one, two, or three intervals.

We have enumerated all possible combinations of intervals in validating Table 4.3.

67

Continuous and Discrete Convolution

Interval Value Valid
t 2 (�1; lf + lg) 0 always

t 2 [lf + lg; lf + ug)
Z t�lg

lf

f(�) g(t� �)d� if lf 6= �1 and lg 6= �1

t 2 [lf + ug; uf + lg)
Z t�lg

t�ug

f(�) g(t� �)d� if lg 6= �1 and ug 6=1

t 2 [uf + lg; uf + ug)
Z uf

t�ug

f(�) g(t� �)d� if uf 6=1 and ug 6=1
t 2 [uf + ug;1) 0 always

(a) Formulas for continuous-time convolution

Interval Value Valid
n 2 (�1; lf + lg � 1] 0 always

n 2 [lf + lg; lf + ug � 1]
n�lgX
m=lf

f [m] g[n�m] if lf 6= �1 and lg 6= �1

n 2 [lf + ug; uf + lg]
n�lgX

m=n�ug

f [m] g[n�m] if lg 6= �1 and ug 6=1

n 2 [uf + lg + 1; uf + ug]
ufX

m=n�ug

f [m] g[n�m] if uf 6=1 and ug 6=1

n 2 [uf + ug + 1;1) 0 always

(b) Formulas for discrete-time convolution

I. if lf = �1 and uf = 1 OR lg = �1 and ug = 1, then the convolution
extends for all time and is computed by the de�nition.

II. if lf = �1 and uf 6= 1 and lg 6= �1 and ug = 1, then the convolution
extends for all time with two intervals of interest for the output variable v:

A. for v 2 (�1; uf), apply de�nition with upper limit being v, and

B. for v 2 [uf ;1), apply de�nition with upper limit being uf .

III. if lf 6= �1 and uf = 1 and lg = �1 and ug 6=1, then apply II above after
switching the two F-intervals.

Table 4.3: Modi�cation to the Square Matrix Rule for Convolution
Convolving one F-interval ff , lf , ufg with another F-
interval fg, lg, ugg generates one, two, or three intervals
with non-zero functions. The tables assume that the �rst
F-interval is the longer one, i.e. uf � lf > ug � lg. The
three special cases are enumerated above.

68

Summary

Even though PiecewiseConvolution does not use the
ip-and-slide approach to

calculate outputs, the routine does have the ability to demonstrate the
ip-and-slide

approach by means of animation, e.g. convolving two pulse functions in t:

PiecewiseConvolution[CPulse[1,t], CPulse[1,t], t, Dialogue -> All]

Enabling the Dialogue option triggers the generation of the animation sequence:

False for no animation, True for the
ip-and-slide of the �rst function across the

second, and All for the
ip-and-slide of the �rst function across the second as well as

the corresponding overlapping intervals for each
ip-and-slide frame. The Dialogue

option is used in many other routines in the MDSPPs, as is demonstrated in Chapter

5.

4.5 Summary

Mathematica possesses some inherent signal processing capabilities. It can compute

the numerical (multidimensional) Fourier transform of a (multidimensional) sequence

of data. It de�nes many functions such as trigonometric, exponential, logarithmic,

and Bessel functions commonly used in an algebraic representation of signals. How-

ever, basic signals such as step and impulse functions and basic systems such as

shifters and �lters are missing in the core of Mathematica. By extending Mathemat-

ica, the MDSPPs de�ne many of the missing signals and systems. This chapter also

introduces some of the plotting and symbolic abilities of the MDSPPs. Examples of

plotting in the \time" domain include signal plots, sequence plots, and density plots

(for the visualization of resampling operations). The lone symbolic ability introduced

by this chapter is linear convolution which is implemented for both the discrete and

continuous domains. Chapter 5 describes the MDSPPs in more detail.

69

CHAPTER 5

Analysis of Multidimensional

Signals and Systems

Chapter 2 introduces SPLICE and its descendants which can deduce certain properties

of one-dimensional discrete-time signals generated by various components of a system.

The multidimensional signal processing packages (MDSPPs) extend the ability of

SPLICE to analyze signal properties to multiple dimensions. As discussed in Section

5.1, several new important properties have also been added.

Besides generalizing the analysis of signal properties to multiple dimensions,

the MDSPPs de�ne a suite of analysis tools for multidimensional discrete-time and

continuous-time signals based on linear transform theory. For continuous-time signals,

the MDSPPs implement the multidimensional Laplace and Fourier transforms. For

discrete-time signals, the MDSPPs implement the multidimensional z, discrete-time

Fourier, and discrete Fourier transforms. The linear transform routines are symbolic

because they map algebraic expressions between the \time" and various \frequency"

domains (see Section 5.2).

Analysis of separable multidimensional systems reduces to analysis of each di-

mension separately. The one-dimensional capabilities of the multidimensional z and

Laplace transform routines are useful in solving linear constant coe�cient di�erence

and di�erential equations, e.g. those describing passive networks (see Section 5.3.1).

Coupling the symbolic linear transforms with graphical representations of signals en-

ables new routines to automate the analysis of one-dimensional signals in the time,

generalized frequency (z or Laplace), and Fourier frequency domains (see Section

5.3.2).

70

Extending Signal Properties in E-SPLICE and ADE

The linear transform routines are extensible in that users can provide their own

transform pairs. Specifying transform pairs for input signals enables the transform

routines to generate the input-output relationships of multirate systems (see Section

5.4).

The forward z and Laplace transform routines support multidimensional multi-

lateral signals, so they must track the region of convergence (ROC). The ROC can

be used to determine algebraic conditions for the stability of multidimensional sys-

tems (see Section 5.5.1). After assigning values to free parameters, stability can be

determined graphically for two-dimensional systems (see Section 5.5.2).

The multidimensional capabilities of the transform routines assist in the au-

tomation of signal analysis and the derivation of transform properties. Automated

two-dimensional signal analysis (Section 5.6.1) is an extension of the general signal

analyzers described earlier. Deriving properties of linear transforms (including track-

ing the changes in the region of convergence) is now possible in higher dimensions

(Section 5.6.3).

5.1 Extending Signal Properties in E-SPLICE and

ADE

Myers [7, 8, 9] identi�ed a set of properties for one-dimensional signals as shown

earlier in Table 2.1. Each of these properties can be generalized to the multidimen-

sional case. The Period property is now described by a non-singular integer period-

icity matrix (which is diagonal for separable signals). We have made Start-BW and

End-BW more descriptive by renaming them to StartBandwidth and EndBandwidth,

respectively. The properties of Start, End, StartBandwidth and EndBandwidth be-

come sets of coordinates. Similarly, Support and Bandwidth become lists with one

element per dimension. Together, these two slots (pieces of data) de�ne the small-

est non-zero rectangular region of support containing the \time" and \frequency"

71

Linear Transforms

domains, respectively. We add the methods (procedures) InDomainFunction and

InBandwidthFunction to de�ne the shape of the region of support. For example, a

circular region of support for the general multidimensional case would be written as

Function[coordinates, Apply[Plus, coordinates^2] < r^2]

which computes x21 + x22 + � � � < r2 where (x1; x2; : : :) is the list of coordinates.

The methods InDomainQ and InBandwidthQ check �rst if the passed set of coordi-

nates is in the rectangular region of support and then call InDomainFunction or

InBandwidthFunction to determine if the set of coordinates is really in the region

of support. Many types of symmetry can exist for di�erent combinations of the

signal variables, so the properties Symmetry and CenterOfSymmetry become lists of

the types of and centers of symmetry, respectively. De�ning the types of symmme-

try and their centers, however, in multiple dimensions becomes very di�cult. The

Real-or-Complex property has been replaced by DataType which can take the value

of Real, Complex, Integer, etc. The MDSPPs add the property Variables to keep

track of the \time" domain variables. Table 5.1 lists the multidimensional signal

properties recognized by the MDSPPs.

5.2 Linear Transforms

Many signal processing algorithms are ultimately based on linear transforms| z,

discrete-timeFourier, discrete Fourier for discrete-time signals and Laplace and Fourier

transforms for continuous-time signals. The multidimensional signal processing pack-

ages, which are introduced in Chapter 4, implement these transforms in their most

general multidimensional multi-sided symbolic forms by applying a sequence of trans-

formation rules. Each routine �rst checks special multidimensional rules and then

applies the one-dimensional rule base to each dimension of the signal. Even though

we use the fact that the linear transform kernels are separable, we do not make any

72

Linear Transforms

Signal Property Meaning
Bandwidth non-zero rectangular extent of frequency domain

CenterOfSymmetry center of symmetry in the time domain
DataType value is Real, Complex, Integer, : : :

End end of non-zero rectangular extent in the time domain

EndBandwidth end of non-zero rectangular extent of bandwidth

InBandwidthFunction� function de�ning the shape of the frequency domain

InBandwidthQ� checks to see if the coordinates are in the region of sup-
port for the time domain

InDomainFunction� function de�ning the shape of the time domain

InDomainQ� checks to see if the coordinates are in the region of sup-
port for the frequency domain

Period (multidimensional) period
Start start of non-zero rectangular extent in the time domain

StartBandwidth start of non-zero rectangular extent of bandwidth

Support non-zero rectangular extent in the time domain

Symmetry multi-valued parameter describing time-domain symme-
try; possible values are: Symmetric, AntiSymmetric,
ConjugateSymmetric, and ConjugateAntiSymmetric

Variables� symbols used as time domain variables

� new multidimensional property (unnecessary in one dimension)

Table 5.1: Signal Properties Supported by the Signal Processing Packages

73

Analysis of One-Dimensional Systems Using Transforms

assumptions about the signal being transformed.

The rules in each one-dimensional rule base are applied sequentially. At each

iteration, the �rst rule that applies to the expression being transformed is invoked

thereby rewriting the expression. The process repeats until the expression no longer

changes. Since the rules are applied in sequential order, the order of the rules is

very important. We have encoded the rules in the order that humans tend to use

them: transform pairs, transform properties (e.g. additivity), transforms of operators

(e.g. shift), and transform strategies (e.g. partial fraction decomposition). Figure 5.1

diagrams the general structure of the one-dimensional rule bases.

All of the inverse transform routines return a �nal algebraic expression, whereas

the forward transform routines return a data structure. The forward z and Laplace

transforms track and return the region of convergence (ROC). The ROC is necessary

to guarantee uniqueness because the z and Laplace transforms are multilateral. All

of the linear transforms can display the intermediate calculations so that designers

can check the computation. Users can also specify their own transform pairs. This

feature is useful in generating transfer functions for systems (as shown in Section 5.4)

and deriving properties of transforms (as shown in Section 5.6.3).

5.3 Analysis of One-Dimensional Systems Using

Transforms

5.3.1 Solving Di�erence and Di�erential Equations

The linear di�erential equation solver LSolve uses the unilateral Laplace transform

to solve one-dimensional linear constant coe�cient di�erential equations. Figure 5.2

shows the steps taken by LSolve in solving for y(t) in the equation

y00(t) +
3

2
y0(t) +

1

2
y(t) = eatu�1(t)

74

Analysis of One-Dimensional Systems Using Transforms

 Break up non-
separable functions

 Known
rational transform
 pair?

 Known non-
rational transform
 pair?

 Do any
properties
 apply?

 Known
operator?

 Do any
strategies
 apply?

STOP

Apply the catch-
 all strategy

START

YES

NO

YES

YES

NO

NO

YES

NO

YES

NO

Figure 5.1: Structure of the One-Dimensional Transform Rule Bases

One-dimensional transform rule bases form the backbone
of the more general multidimensional, multi-sided trans-
forms. Each rule base calls a one-dimensional rule base
once for each dimension of the transform.

75

Analysis of One-Dimensional Systems Using Transforms

In[17]:=

LSolve[y’’[t] + 3/2 y’[t] + 1/2 y[t] ==
 Exp[a t] CStep[t], y[t], y[0] -> 4,
 y’[0] -> 4, Dialogue -> All]

Solving for y[t] in the differential equation

 y[t] 3 y’[t] a t
 ---- + ------- + y’’[t] = E CStep[t]
 2 2

 subject to the initial conditions

 {y[0] -> 4, y’[0] -> 4}

The Laplace transform of the left side is:

 1 3 s 2 3 y[0]
 L { y[t] } (- + --- + s) - ------ -
 2 2 2

 s y[0] - y’[0]

(In the general case, the unilateral Laplace

 transform of the nth derivative of y[t] is:

 (n) n
 L {y [t] } = L { y[t] } s +

 -1 + n -2 + n
 s y[t0] s y’[t0]
 -(-------------) + -(--------------) + ... +
 s t0 s t0
 E E

 (-1 + n)
 y [t0]
 -(-------------)
 s t0
 E

 where t=t0 is the initial condition.)

The Laplace transform of the right side is:

 1

 s - a

Solving for the unknown transform yields

 1 3 y[0]
 ----- + ------ + s y[0] + y’[0]
 s - a 2

 1 3 s 2
 - + --- + s
 2 2

which becomes

 1
 10 + 4 s + -----
 s - a

 1 3 s 2
 - + --- + s
 2 2

Inverse transforming this gives y[t]:

Out[17]=
 2 t/2 t/2
(2 (-5 - 16 a - 12 a + 6 E + 22 a E +

 2 t/2 t + a t
 16 a E + E) CStep[t]) /

 2 t
 ((1 + 3 a + 2 a) E)

In[18]:=

yoft = % /. (CStep[t] -> 1)

Out[18]=
 2 t/2 t/2
(2 (-5 - 16 a - 12 a + 6 E + 22 a E +

 2 t/2 t + a t
 16 a E + E)) /

 2 t
 ((1 + 3 a + 2 a) E)

In[19]:=

Simplify[yoft /. t -> 0]

Out[19]=
4

In[20]:=

Simplify[D[yoft, t] /. t -> 0]

Out[20]=
4

Figure 5.2: Interaction with the Di�erential Equation Solver

76

Analysis of One-Dimensional Systems Using Transforms

subject to the initial conditions y(0+) = 4 and y0(0+) = 4. Because full justi�cation

is enabled by the option Dialogue -> All, the solver describes the intermediate

calculations. The user has access to the answer as well as how to obtain it. Once the

answer has been obtained, the user can check the answer. Command 18 de�nes the

variable yoft as y(t) for t > 0; since u�1(t) = 1 for t > 0, the continuous-time step

function is replaced by 1. Command 19 veri�es that y(0+) is indeed 4 and the last

command checks the value of y0(0+).

Like LSolve, ZSolve uses the unilateral z-transform to solve one-dimensional

initial value linear constant coe�cient di�erence equations. Figure 5.3 shows the

steps taken by the di�erence equation solver to compute the closed-form formula for

the well-known Fibonacci sequence:

yn � yn�1 � yn�2 = 0 y0 = 0 y1 = 0

The solver computes the non-recursive formula for yn in exact precision. Even though

the solution contains irrational numbers, the formula yields integers for the Fibonacci

numbers because arithmetic is performed in exact precision. The �rst 11 values of

the sequence are computed by the Table command in Figure 5.3.

5.3.2 Generalized Signal Analysis

The MDSPPs support new formats for plotting signals, sequences, and their trans-

forms. New routines plot 1-D and 2-D signals and systems in the time domain as

well as their pole-zero diagrams and frequency responses. They can generate several

di�erent styles of frequency plots, i.e. whether the frequency domain scale is linear or

logarithmic and whether the magnitude plot has a linear or decibel range. They also

graph root loci for one varying parameter.

Two routines, ASPAnalyze and DSPAnalyze, combine these plotting abilities

with the transform capabilities to perform a complete analysis of 1-D and 2-D signals.

These analyzers display textual and graphical information. The textual dialogue

77

Analysis of One-Dimensional Systems Using Transforms

fib[n_] =
 ZSolve[y[n] - y[n-1] - y[n-2] == 0,
 y[n], y[0] -> 0, y[1] -> 1,
 Dialogue -> All]

Solving for y[n] in the difference equation

 -y[-2 + n] - y[-1 + n] + y[n] = 0

 such that n > 1 and subject to the

 initial conditions

 {y[0] -> 0, y[1] -> 1}

The first step is to substitute the initial

 conditions into the difference equation

 for n from 0 to 1. This will give rise

 to 2 impulse function(s) which will be

 added to the right-hand side of the

 difference equation. Then, the unilateral

 z-transform will be used to solve the

 difference equation in the index n.

Solving for y[n] in the difference equation

 augmented by the initial conditions:

 -y[-2 + n] - y[-1 + n] + y[n] =

 Impulse[-1 + n]

The z-transform of the left side is:

 -2 1
 (1 - z - -) Z{ y[n] }
 z

The z-transform of the right side is:

 1
 -
 z

Solving for the unknown z-transform yields

 1

 -2 1
 (1 - z - -) z
 z

Inverse transforming this gives y[n]:

 -1 + n 1 -1 + n
-2 2 (------------) Step[-1 + n] -----------
 -1 - Sqrt[5]
-- + ---
 Sqrt[5] (-1 - Sqrt[5])

 -1 + n 1 -1 + n
 2 2 (------------) Step[-1 + n] -----------
 -1 + Sqrt[5]
 --- --
 Sqrt[5] (-1 + Sqrt[5])

Table[Simplify[fib[i]], {i, 0, 10}]

{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

Figure 5.3: Solving the Fibonacci Di�erence Equation

78

Analysis of Multirate Systems Using Transforms

includes the Fourier and the generalized transform (z or Laplace) as well as the

algebraic conditions for stability in terms of the free parameters. Graphics information

includes the time-domain plot, the pole-zero diagram, and the frequency response.

The output of the signal analysis routines is meant to be self-explanatory at the level

of a student studying linear systems theory. For example, Figure 5.4 shows the general

analysis of the impulse response of an analog �lter. Also, Figure 5.5 shows general

analysis of the upsampling by 3 of a discrete-time (i.e. sampled) sinc function.

5.4 Analysis of Multirate Systems Using Trans-

forms

One way to understand the behavior of a system is to derive its input-output rela-

tionship in a transform domain. The input-output relationship is simply a transfer

function for linear shift-invariant (LSI) systems, but it becomes a transfer function

plus aliasing terms for linear periodically time-varying (LPTV) systems [49]. When

deriving input-output relationships on paper, engineers implicitly use transform pairs

such as x[n] ! X(z) to represent the z-transform of the input signal x[n]. For

LSI and LPTV systems, the linear transform routines can derive input-output rela-

tionships if all of the unknown quantities (input signals, unspeci�ed �lters, and so

forth) are assigned transform pairs. This ability applies to one-dimensional and mul-

tidimensional, as well as continuous-time and discrete-time, systems. Discrete-time

LPTV systems are also known as multirate systems.

Figure 5.6 shows the derivation of the input-output relationship for a two-channel

non-uniform one-dimensional �lter bank. The block diagram of the �lter bank is

shown in Figure 5.6(a). In the �lter bank, the upper channel contains the frequency

band (�2

3
�; 2

3
�) of the input signal, whereas the lower channel contains the frequency

band (��;�2
3
�)[(2

3
�; �). Both channels are resampled at their Nyquist rates. Figure

5.6(b) gives the de�nition of the �lter bank structure using the notation of the signal

79

Analysis of Multirate Systems Using Transforms

In[2]:=

ASPAnalyze[t Exp[-a t] Cos[3 Pi t / 16] CStep[t],
 t, 0, 3 Pi, a -> 1]

For plotting only, these symbols will
will be assigned default values: {a -> 1}

Real part of the function is shown as solid lines.
Imaginary part of the function is shown as dashed
 lines.

2 4 6 8
t

Continuous-Time Domain Analysis

-0.05

0.05

0.1

0.15

0.2

0.25

0.3

 3 Pi t
t Cos[------] CStep[t]
 16

 a t
 E

has the following Laplace transform:

 2 2 2
256 (256 a - 9 Pi + 512 a s + 256 s)

 2 2 2 2
 (256 a + 9 Pi + 512 a s + 256 s)

The region of convergence is:

-Re[a] < Re(s) < Infinity

The system is stable if -Re[a] < 0

The default values are now being considered.

The zeroes are: {-1.58905, -0.410951}

The poles are: {-1. + 0.589049 I,

 -1. - 0.589049 I, -1. + 0.589049 I,

 -1. - 0.589049 I}

-1.75 -1.5 -1.25 -0.75 -0.5
Re s

-0.6

-0.4

-0.2

0.2

0.4

0.6

Im s

O O

X

X

Since the signal is stable, the
frequency response can be computed
directly from the Laplace transform.

 3 Pi t
t Cos[------] CStep[t]
 16

 a t
 E

has the following frequency response:

 2 2 2
256 (256 a - 9 Pi + 512 I a w - 256 w)

 2 2 2 2
 (256 a + 9 Pi + 512 I a w - 256 w)

0.01 0.05 0.1 0.5 5 10.
w

Magnitude Response (dB)

-40

-35

-30

-25

-20

-15

-10

0.01 0.05 0.1 0.5 5 10.
w

Phase Response (degrees)

-150

-125

-100

-75

-50

-25

Out[2]=
LTransData[

 2 2 2
 256 (256 a - 9 Pi + 512 a s + 256 s)
 ---------------------------------------, --------------------------------------
 2 2 2 2
 (256 a + 9 Pi + 512 a s + 256 s)

 Rminus[-Re[a]], Rplus[Infinity],

 LVariables[s]]

The signal analyzer plots the impulse re-

sponse of the of the analog �lter over t 2

(0; 3�) when the parameter a takes value

of 1. The analyzer �nds the Laplace trans-

form and displays the pole-zero diagram

(with the ROC shaded). It also prints the

formula describing the frequency response

and plots the magnitude and phase of the

frequency response.

Figure 5.4: One-Dimensional Analog Signal Analysis

80

Analysis of Multirate Systems Using Transforms

In[2]:=

DSPAnalyze[Upsample[3,n][Sinc[n]], n, -20, 20]

-20 -15 -10 -5 5 10 15 20
n

Discrete-Time Domain Analysis

- 0.2

0.2

0.4

0.6

0.8

1

Transform::incomplete:
 The rule base could not compute the forward
 z-transform of Sinc[n] with respect to n.

Upsample [Sinc[n]]
 3,n

has the following frequency response:

 1
Pi Periodic [CPulse [- + w]]
 2 Pi 2/3 3
 ---- in w
 3

- 6 - 4 - 2 2 4 6
w

Magnitude Response

0.5

1

1.5

2

2.5

3

Out[2]=
-Incomplete z-Transform-

Figure 5.5: One-Dimensional Discrete-Time Analysis of a Multirate Signal

The z-transform does not exist for this case, so only the time-
domain signal and its Fourier transform are displayed.

81

Analysis of Multirate Systems Using Transforms

x[n]

- "n 2 - h0[n]
- #n 3 - "n 3 - g0[n]

- #n 2

?

- h1[n]
- #n 3 - "n 3 - g1[n]

6

� �
� �
+ -

x̂[n]

(a) Flow graph of the �lter bank

upperchannel =

Downsample[2,n][

Convolve[n][g0[n], Upsample[3,n][

Downsample[3,n][

Convolve[n][h0[n],

Upsample[2,n][x[n]]]]]]]

lowerchannel =

Convolve[n][g1[n], Upsample[3,n][

Downsample[3,n][Convolve[n][h1[n], x[n]]]]]

(b) Representation of the �lter bank in the new environment

Xhat[z] = ZTransform[lowerchannel + upperchannel, n, z,

TransformLookup -> { x[n] :> X[z],

g0[n] :> G0[z], g1[n] :> G1[z],

h0[n] :> H0[z], h1[n] :> H1[z] }]

(c) Mathematica code to generate the input-output relationship

TeXForm[Collect[SPSimplify[6 TheFunction[Xhat[z]]],

{ X[z], X[Exp[2 I Pi/3] z], X[Exp[4 I Pi/3] z] }]]

X̂(z) = 1

6
(G0 (�

p
z)H0 (�

p
z) +G0 (

p
z)H0 (

p
z) + 2G1 (z)H1 (z))X(z) +

1

6

�
G0 (�

p
z)H0 (e

i
3

�
p
z) +G0 (

p
z)H0 (e

4i
3

�
p
z) + 2G1 (z)H1 (e

2i
3

�z)
�
X(e

2i
3

�z) +

1

6

�
G0 (
p
z)H0 (e

2i
3

�
p
z) +G0 (�

p
z)H0 (e

5i
3

�
p
z) + 2G1 (z)H1 (e

4i
3

�z)
�
X(e

4i
3

�z)

(d) Input-output relationship generated by the environment

Figure 5.6: Deriving Input-Output Relationship for a Non-Uniform Filter Bank

82

Multidimensional Stability Analysis

processing packages. Figure 5.6(c) uses the forward z-transform routine to generate

the relationship between X(z) and X̂(z) in the z domain. Figure 5.6(d) converts

the algebraic input-output relationship to its TEX form using the built-in abilities of

Mathematica's TeXForm command. In order to make the formula look better in TEX,

we wrote the Mathematica command to multiply X̂(z) by six, then collect terms, and

�nally generate the equivalent TEX code. By hand, we added the 1

6
factors to each

term.

5.5 Multidimensional Stability Analysis

Multidimensional stability analysis is di�cult to describe analytically. For some

classes of multidimensional systems, the conditions for stability can be derived by

examining the region of convergence (ROC) of their generalized frequency transforms

(Section 5.5.1). Once values have been assigned to free parameters, stability becomes

much easier to analyze by visualization (Section 5.5.2).

5.5.1 Symbolic Analysis of Stability

Knowing the ROC for a signal leads to a set of stability conditions involving the free

parameters of the signal. A discrete-time signal is stable if the ROC of its z-transform

R� < jzj < R+ contains the unit circle, i.e.R� < 1 < R+. A continuous-time signal is

stable if the ROC of its Laplace transform R� < <e(s) < R+ contains the imaginary

axis, i.e. R� < 0 < R+. The Stable command uses these simple comparisons to

convert ROC information to a set of stability conditions.

These comparisons generalize to multiple dimensions. Figure 5.7 shows an ex-

ample of the stability analysis of a two-dimensional non-separable signal taken from

[53]. In multiple dimensions, non-separable signals have non-separable regions of con-

vergence, which implies that one or more of the z-transform variables will appear in

the ROC. When checking for stability, the z-transform variables take values on the

83

Multidimensional Stability Analysis

In[36]:=

ZTransform[(n1 + n2)! a^n1 b^n2 Step[n1,n2] / (n1! n2!),

{n1, n2}, {z1, z2}]

Out[36]=

1 1

ZTransData[-----------, Rminus[{Abs[a], Abs[b] Abs[------]}],

a b a

1 - -- - -- 1 - --

z1 z2 z1

Rplus[{Infinity, Infinity}], ZVariables[{z1, z2}]]

In[37]:= Stable[%]

Out[37]= Abs[a] < 1 && Abs[b] < 1 - Abs[a]

In[38]:= Assuming[All]

Out[38]=

1 a

Abs[a] < 1 && Abs[b] Abs[------] < 1 && 1 - -- != 0

a z1

1 - --

z1

The above interaction demonstrates the stability analysis of a two-dimensional
non-separable sequence in the variables n1 and n2 having the form

(n1 + n2)!

n1! n2!
an1 bn2 u[n1; n2]

Since the function is not separable, neither is the region of convergence (ROC).
Stable generates the inequality for checking if the unit bi-sphere (jzij = 18i)
is in the ROC. If the inequality does not evaluate to true or false, Stable will
apply a set of simpli�cation rules to it with the side information jzij = 18i. The
actual stability condition is jaj+jbj < 1 [53] which the stability checker returns
as jbj < 1�jaj (note that the �rst condition jaj < 1 is actually redundant). By
evaluating Assuming[All], the MDSPPs will list the assumptions it has made
about free parameters In the output of Assuming[All] above, the �rst two
inequalities are the original inequality conditions generated from the ROC.
The third inequality arose during the simpli�cation of the second inequality.

Figure 5.7: Stability Analysis of a Non-Separable Two-Dimensional Signal

84

Multidimensional Stability Analysis

multidimensional unit circle: jz1j = 1, jz2j = 1, etc. In N dimensions with z-transform

variables fzigNi=1, the comparison test for stability [53] generalizes to

max
i=1:::N; i6=j

jzij=1

R� < 1 < min
i=1:::N;i6=j

jzij=1

R+ where R� < jzjj < R+ for j = 1 : : : N

Similarly for the Laplace transform of continuous-time signals, the stability test gen-

eralizes to

max
i=1:::N; i6=j

<e(si)=0

R� < 0 < min
i=1:::N;i6=j

<e(si)=0

R+ where R� < <e(sj) < R+ for j = 1 : : : N

The stability checking routine replaces any <e(si) terms in the Laplace transform

ROC with zero.

5.5.2 Graphical Analysis of Stability

The results of transforms are sometimes best understood in terms of graphical repre-

sentations. A wide array of graphical capabilities have been implemented in the MD-

SPPs for 1-D and 2-D signals in both the discrete-time and continuous-time domains:

continuous and discrete plots, magnitude and phase plots, and pole-zero diagrams.

For non-separable 2-D systems, a pole-zero diagram can be displayed as the locus

of poles and zeros of one transform variable parameterized by the other [53]. By

inspection of the loci of poles and zeros, one can determine the stability of the signal

by using the same rules as in one dimension: if the poles lie outside of the unit circle,

then the causal implementation of the system would be unstable. Underlying the

pole-zero root loci diagrams is a root locus plotting command for one free variable.

Figure 5.8 analyzes the location of the poles and zeros for a signal. Zeros are

shown as O's, poles are shown as X's, the unit circle is shown as a solid curve, and

the lower bound of the ROC R� is graphed with dashed lines. The upper bound of

the ROC R+ is not shown because it is in�nite for both transform variables. The

left column of Figure 5.8 shows the zero and pole diagrams of the second transform

variable z2 projected onto z1 by the mapping z2 = exp(j!2). The right column

85

Multidimensional Stability Analysis

PoleZeroPlot[

ZTransform[(n1+n2)! (4/5)^n1 (2/7)^n2 Step[n1,n2] / (n1! n2!),

{n1, n2}, {z1, z2}]]

 I w
Numerator polynomial in z1: 35 E z1

Denominator polynomial in z1:

 I w I w
 -28 E - 10 z1 + 35 E z1

-2 -1.5 -1 -0.5 0.5 1 1.5 2
Re z1

Zero Root Map

-2

-1.5

-1

-0.5

0.5

1

1.5

2
Im z1

OO

-2 -1.5 -1 -0.5 0.5 1 1.5 2
Re z1

Pole Root Map

-2

-1.5

-1

-0.5

0.5

1

1.5

2
Im z1

XX

 I w
Numerator polynomial in z2: 35 E z2

Denominator polynomial in z2:

 I w I w
 -10 E - 28 z2 + 35 E z2

-2 -1.5 -1 -0.5 0.5 1 1.5 2
Re z2

Zero Root Map

-2

-1.5

-1

-0.5

0.5

1

1.5

2
Im z2

OO

-2 -1.5 -1 -0.5 0.5 1 1.5 2
Re z2

Pole Root Map

-2

-1.5

-1

-0.5

0.5

1

1.5

2
Im z2

XX

Figure 5.8: Two-Dimensional Pole-Zero Diagrams for an Unstable Signal

The lower limit of the region of convergence (ROC) is plotted
as dashed lines. The ROC extends to in�nity in both z vari-
ables. In parts of the root loci, the poles and zeros actually
move outside of the ROC because the system is unstable.

86

Analysis of Multidimensional Multirate Systems Using Transforms

of Figure 5.8 shows the zero and pole diagrams of the �rst transform variable z1

projected onto z2 by the mapping z1 = exp(j!1). Since the poles fall outside of the

unit circle, the signal is unstable.

5.6 Analysis of Multidimensional Multirate Sys-

tems Using Transforms

This section discusses the use of the MDSPPs to analyze multidimensional multirate

systems. First, Section 5.6.1 applies general two-dimensional signal analysis to a

downsampled signal. Second, Section 5.6.2 shows how the MDSPPs can help in the

visualization of aliasing in two dimensions. Last, Section 5.6.3 performs a purely

symbolic analysis of resampling.

5.6.1 Automated Two-Dimensional Signal Analysis

We now elaborate on the two-dimensional signal analysis abilities introduced in

previous sections of this chapter. Mathematica can already plot two-dimensional

continuous-time functions as three-dimensional mesh plots via its Plot3D command.

Plot3D can also be used to generate the mesh plots for two-dimensional sequences.

For two-dimensional sequences, however, a better alternative is to use DensityPlot

to render an aerial view of the domain and range (see Figure 4.1). In two dimensions,

pole-zero diagrams for z-transforms become root maps [53], as mentioned in Section

5.5.2. Likewise for two-dimensional Laplace transforms, the pole-zero diagram is a

root map| s1 is plotted with s2 = j!1 for di�erent values of !1 and visa-versa for

s2. Frequency responses are plotted using a parametric plotting routine. Figure 5.9

performs analysis on a discrete-time signal which su�ers from aliasing distortion.

87

Analysis of Multidimensional Multirate Systems Using Transforms

lowpass2Dtile =
 CPulse[Pi, w1 + Pi/2] CPulse[Pi, w2 + Pi/2];
lowpass2D =
 InvDTFTransform[lowpass2Dtile, {w1, w2}]

lowpass2Dtile =
 CPulse[Pi, w1 + Pi/2] CPulse[Pi, w2 + Pi/2];
lowpass2D =
 InvDTFTransform[lowpass2Dtile, {w1, w2}]

 n1 Pi n2 Pi
Sinc[-----] Sinc[-----] ---- ----
 2 2

 4

downMatrix = {{2, 1}, {1, 3}};
DSPAnalyze[
 Downsample[downMatrix, {n1,n2}][lowpass2D],
 {n1, n2}, {-5, -5}, {5, 5}]

Discrete-Time Domain Analysis

-4
-2

0

2

4

n1
-4

-2

0

2

4

n2

0

0.1

0.2

-4
-2

0

2

4

n1
-4

-2

0

2

4

n2

0

. 1

2

Transform::incomplete:
 The rule base could not compute the forward
 n1
 z-transform of Sinc[--] with respect to n1.
 2

ZTransform::notvalid:
 The forward z-transform could not be found.

 n1 Pi n2 Pi
 Sinc[-----] Sinc[-----]
 2 2
Downsample [-----------------------]
 2 1 | n1 4

 1 3 | n2

has the following frequency response:

 Pi 3 w1 w2
Periodic [(CPulse [-- + ---- - --]
 2 Pi 0 | w1 Pi 2 5 5

 0 2 Pi | w2

 Pi w1 2 w2
 CPulse [-- - -- + ----] +
 Pi 2 5 5

 Pi 3 (-4 Pi + w1) -6 Pi + w2
 CPulse [-- + -------------- - ----------]
 Pi 2 5 5

 Pi -4 Pi + w1 2 (-6 Pi + w2)
 CPulse [-- - ---------- + --------------] +
 Pi 2 5 5

 Pi 3 (-4 Pi + w1) -4 Pi + w2
 CPulse [-- + -------------- - ----------]
 Pi 2 5 5

 Pi -4 Pi + w1 2 (-4 Pi + w2)
 CPulse [-- - ---------- + --------------] +
 Pi 2 5 5

 Pi 3 (-2 Pi + w1) -4 Pi + w2
 CPulse [-- + -------------- - ----------]
 Pi 2 5 5

 Pi -2 Pi + w1 2 (-4 Pi + w2)
 CPulse [-- - ---------- + --------------] +
 Pi 2 5 5

 Pi 3 (-2 Pi + w1) -2 Pi + w2
 CPulse [-- + -------------- - ----------]
 Pi 2 5 5

 Pi -2 Pi + w1 2 (-2 Pi + w2)
 CPulse [-- - ---------- + --------------]) / 5]
 Pi 2 5 5

Magnitude Response

0

2

4

6

w1

0

2

4

6

w2

0

0.5

1

0

2

4

6

w1

0

2

4

6

w2

0

. 5

1

Phase Response (degrees)

0

2

4

6

w1

0

2

4

6

w2

-0.5

-0.25

0

0.25

0.5

0

2

4

6

w1

0

2

4

6

w2

.5

25

0

5

5

-Incomplete z-Transform-

The �rst command de�nes a 2-D time-

domain signal that is an ideal quarter-band

lowpass �lter. The second command in-

vokes the digital signal analyzer. The an-

alyzer �rst plots the time response, then

reports that it cannot �nd the z-transform

because of the two-sided sinc functions,

and �nally computes and plots the DTFT.

Downsampling by 5 quintuples the area of

support in the the frequency domain which

causes aliasing. Aliasing appears in the

magnitude plot for amplitudes above 0.2.

Figure 5.9: Signal Analysis of Aliasing in Two Dimensions

88

Analysis of Multidimensional Multirate Systems Using Transforms

5.6.2 Visualization of Downsampling in Two Dimensions

We will now use the MDSPPs to visualize and analyze the e�ects of downsampling

by matrix M on a baseband signal X(!). The baseband signal X(!) is periodic

with period of 2� in each discrete-time frequency variable. In terms of the discrete-

time frequency variables !, downsampling byM periodically replicates the baseband

jdetM j times in each 2�� � � � � 2� frequency tile. The centers of the new frequency

bands occur at the original center of the baseband shifted by the aliasing vectors

associated with M (see Section 3.1). The aliasing vectors, computed according to

equation (3.5), are: !i = 2�
�
MT

��1
ki, where i = 0; : : : ; jdetM j � 1 and ki is the

ith coset vector.

In the MDSPPs, the DownsamplingAnalysis routine determines if the down-

sampled signal experiences aliasing and if it covers the frequency domain. A downsam-

pled signal can su�er from two kinds of aliasing: intra-band aliasing and inter-band

aliasing. In intra-band aliasing, a frequency band overlaps with itself, whereas in

inter-band aliasing, a frequency band overlaps with another frequency band. Clearly,

if a downsampled signal does not experience aliasing and covers the frequency domain,

then the signal has been resampled at its Nyquist rate.

DownsamplingAnalysis represents the downsampling operation by its down-

sampling matrix and the baseband signals as a list of polygons. For example, Figure

5.10 shows the e�ect of downsampling by a quincunx downsampling matrix on a

diamond-shaped passband. A quincunx resampling matrix has a determinant of 2 or

�2 and non-zero entries. The lattice (sampling grid) generated by quincunx matrices

correspond to diagonal interleaving, which is commonly found in video signals. The

vertices of the diamond-shaped passband are obtained by mapping a separable low-

pass �lter by a quincunx matrix. In Figure 5.10, the quincunx downsampler resamples

the baseband signal at its Nyquist rate.

In Figure 5.11, we keep the same baseband but use a di�erent downsampling

matrix. The downsampling matrix has a determinant of three. Since the baseband

89

Analysis of Multidimensional Multirate Systems Using Transforms

DownsamplingAliasing[
 {{1, 1}, {1, -1}},
 Polygon[{{-Pi,0}, {0,Pi}, {Pi,0}, {0,-Pi}}],
 Dialogue -> All]

Analyzing aliasing for the downsampling matrix

 1 1
 for a baseband whose domain is
 1 -1

 described by the polygon with vertices

 {{-Pi, 0}, {0, Pi}, {Pi, 0}, {0, -Pi}}

The downsampling will yield the baseband plus 1

 shifted/skewed copy of the baseband.

The shifting vectors are {{0, 0}, {Pi, Pi}}

The area of the baseband is

 2
 2 Pi whose numerical value is 19.7392.

Initial analysis: the downsampler resamples the

 baseband signal at its Nyquist rate (assumin g

 that no aliasing is present).

Band #1 of 2 is free of intra-band aliasing.

0 π−π

0

π Band #1 of 2

Band #2 of 2 is free of intra-band aliasing.

0 π−π

0

π Band #2 of 2

Tiling of input frequency domain for the

 2 bands:

0 π−π

0

π Tiling of Input Frequency Domain

The downsampler does not introduce aliasing.

It resamples the baseband at the Nyquist rate.

Figure 5.10: Quincunx Downsampling Without Aliasing

90

Analysis of Multidimensional Multirate Systems Using Transforms

occupies 50% of the frequency domain, generating three copies of the baseband will

produce inter-band aliasing. DownsamplingAliasing reports that no intra-band alias-

ing occurs and that inter-band aliasing occurs in 50% of the frequency domain.

The DownsamplingAliasing routine works as follows. For each new band, the

routine computes the location of the vertices of the band, decomposes the band into

a union of triangles, and determines how each triangle maps into the fundamental

frequency tile !1 2 (��; �) S !2 2 (��; �) by calling the TriangleModWithSquare

routine. The TriangleModWithSquare routine is recursive. For each triangle,

� if each of the triangle vertices is either inside or on the border of the fundamental

tile, then return the triangle;

� if one or more of the corners of the fundamental tile is inside the triangle,

then split the triangle into several triangles by using the corner(s) of the fun-

damental tile inside of it as the new vertices and pass each new triangle to

TriangleModWithSquare;

� if the triangle is completely outside of the fundamental tile, then shift the trian-

gle by the right number of periods to put at least one vertex in the fundamental

tile and pass it to TriangleModWithSquare; and

� if none of the above cases apply, then the triangle intersects one or more of the

edges of the fundamental tile, so we split the triangle at each edge intersection

into smaller triangles:

{ return the triangles inside the fundamental tile, and

{ pass triangles outside of the fundamental tile to TriangleModWithSquare.

Once the new band has been generated, the DownsamplingAliasing routine checks

for intra-band aliasing by checking for overlapping regions in the band (via the

OverlappingRegions routine). The new band is then plotted with intra-band alias-

ing region (if it exists) shaded black. After all the bands have been generated, the

91

Analysis of Multidimensional Multirate Systems Using Transforms

DownsamplingAliasing[
 {{1, 1}, {2, -1}},
 Polygon[{{-Pi, 0}, {0, Pi}, {Pi,0}, {0,-Pi}}],
 Dialogue -> True]

Analyzing the aliasing for the downsampling matri x

 1 1
 for a baseband whose domain
 2 -1

 is described by the polygon with vertices

 {{-Pi, 0}, {0, Pi}, {Pi, 0}, {0, -Pi}}

Band #1 of 3 is free of intra-band aliasing.

0 π−π

0

π Band #1 of 3

Band #2 of 3 is free of intra-band aliasing.

0 π−π

0

π Band #2 of 3

Band #3 of 3 is free of intra-band aliasing.

0 π−π

0

π Band #3 of 3

Tiling of the input frequency domain for the 3

 bands with inter-band aliasing shown in black:

0 π−π

0

π Tiling of Input Frequency Domain

The downsampler introduces inter-band aliasing.

Aliasing occurs in 50% of the frequency domain.

Figure 5.11: Quincunx Downsampling With Aliasing

92

Analysis of Multidimensional Multirate Systems Using Transforms

DownsamplingAliasing routine checks for inter-band aliasing by checking for over-

lapping regions between bands. The routine then computes the total area of the

domain in which aliasing occurs.

5.6.3 Automatic Derivation of Transform Properties

When all the free parameters have been assigned values, graphical-based signal anal-

ysis provides much insight. Sometimes, symbolic analysis can help in the choice of

values for free parameters. For example, Section 5.4 showed that the transform rou-

tines can derive the input-output relationship of a system in a transform domain if

\abstract" transform pairs such as x[n] ! X(z) are provided. In this section, we

examine the use of abstract transform pairs to derive properties of the transforms of

multidimensional multirate signals.

When upsampling a signal in two dimensions say by some upsampling matrix2
4u11 u12

u21 u22

3
5, the resulting transform is

X (zu111 zu212 ; zu121 zu222)

given that the z-transform of the original signal is X(z1; z2). The MDSPPs can

generate this relationship by specifying the abstract transform pair x[n1; n2] !
X(z1; z2):

In[2]:= upMatrix = {{u11, u12}, {u21, u22}};

In[3]:= ZTransform[Upsample[upMatrix, {n1, n2}] [x[n1,n2]],

{n1,n2}, {z1, z2},

TransformLookup -> { x[n1,n2] :> X[z1,z2] }]

u11 u21 u12 u22

Out[3]= ZTransData[X[z1 z2 , z1 z2], Rminus[{0, 0}],

> Rplus[{Infinity, Infinity}], ZVariables[{z1, z2}]]

93

Summary

The MDSPPs will also track the region of convergence of the upsampled signal

if we give the ROC of the input signal:

In[4]:=

ZTransform[

Upsample[upMatrix, {n1, n2}] [x[n1, n2]],

{n1, n2}, {z1, z2},

TransformLookup ->

{ x[n1,n2] :> { X[z1,z2], {rm1,rm2}, {rp1,rp2} } }]

u11 u21 u12 u22

Out[4]= ZTransData[X[z1 z2 , z1 z2],

1/u11 1/u21 1/u12 1/u22

> Rminus[{rm1 rm2 , rm1 rm2 }],

1/u11 1/u21 1/u12 1/u22

> Rplus[{rp1 rp2 , rp1 rp2 }],

> ZVariables[{z1, z2}]]

The resulting multidimensional ROC is not separable. For each zero element uij in the

upsampling matrix, the corresponding xuij and x1=uij terms equal 1 for any value of x.

When the input signal is stable, the ROC of the z-transform of the upsampled signal

will be a compressed version of the ROC of the z-transform of the input signal because

of the nth root terms. The MDSPPs can track the ROC in higher dimensions.

5.7 Summary

This chapter �rst identi�es important properties of multidimensional signals based

on the properties of one-dimensional signals used in SPLICE and ADE and then dis-

cusses the high-level capabilities of the signal processing packages. These high-level

routines, which are summarized in Table 5.2, rely on the representation of signals

and systems as functions and operators, respectively, as discussed in Chapter 4. The

high-level routines cover a wide range of graphical and symbolic analyses for both

94

Summary

Dimension

New Function of Signal Description

ASPAnalyze 1-D and 2-D general analog signal analyzer

CTFTransform 1-D and m-D forward continuous-time Fourier transform

DFTransform 1-D and m-D forward discrete Fourier transform

DTFTransform 1-D and m-D forward discrete-time Fourier transform

DSPAnalyze 1-D and 2-D general digital signal analyzer

InvCTFTransform 1-D and m-D inverse continuous-time Fourier transform

InvDFTransform 1-D and m-D inverse discrete Fourier transform

InvDTFTransform 1-D and m-D inverse discrete-time Fourier transform

InvLaPlace 1-D and m-D inverse Laplace transform

InvZTransform 1-D and m-D inverse z-transform

LaPlace 1-D and m-D forward Laplace transform

LSolve 1-D linear constant coe�cient di�erential

equations solver

PiecewiseConvolution 1-D discrete and continuous convolution

PiecewisePlot 1-D piecewise function plotter

PoleZeroPlot 1-D and 2-D display of pole-zero diagrams

RootLocus 1-D root locus of one free parameter

SequencePlot 1-D and 2-D digital signal plotter

SignalPlot 1-D and 2-D analog signal plotter

Stable 1-D and m-D stability checker

ZSolve 1-D linear constant coe�cient di�erence

equations solver

ZTransform 1-D and m-D forward z-transform

Table 5.2: High-Level Abilities of the Signal Processing Packages

95

Summary

discrete-time and continuous-time signals and systems. The high-level capabilities

work on non-separable multidimensional signals and systems, except for the convolu-

tion, root locus, and di�erential/di�erence equation solving routines which only work

for separable ones. The extended graphics routines help engineers to visualize one-

dimensional and two-dimensional signals and systems. The transform, convolution,

and di�erential/di�erence equation (DE) solvers can provide closed-form symbolic

answers to many problems that would otherwise be di�cult and prone to error when

worked by hand. In addition, these routines can show how they compute the answer

in a step-by-step manner for veri�cation. This dialogue is in natural language for

the transform and DE solvers, but it takes the form of animation for convolution.

We have combined graphical and symbolic analyses for one-dimensional and two-

dimensional signals into two general signal analyzers, one for continuous-time and

one for discrete-time signals.

96

CHAPTER 6

Rearranging Multidimensional Systems

This chapter discusses the rearrangement of algorithms with the goal of �nding bet-

ter or even optimal implementations. By rearranging components of an algorithm,

E-SPLICE and ADE have derived e�cient implementations for three speci�c one-

dimensional multirate systems [31]. E-SPLICE derived the fact that the cascade of

an upsampler and downsampler commutes if their resampling factors are relatively

prime [9]. E-SPLICE and ADE have generated polyphase forms for systems to change

the sampling rate by rational factors [9, 11]. ADE has found an e�cient multiband

structure for the discrete-time implementation of optimal detectors (frequency-chirp

matched �lters) of FSK-coded sonar signal beams based on the pruned FFT [10, 12].

E-SPLICE and ADE know how to rearrange cascade and parallel combinations

of linear one-dimensional (multirate) operators. Many of the rules are based on

operator properties such as linearity. Section 6.1 extends these properties to multidi-

mensional multirate operators and identi�es new properties that became important in

multiple dimensions. E-SPLICE and ADE do supplement their property-based rules

to describe how to rewrite combinations of operators, especially between resamplers

and other operators. We have identi�ed the multidimensional versions of these rules

[39, 52, 53, 71, 72] and encoded them in the multidimensional signal processing pack-

ages (MDSPPs), as discussed in Chapter 3. Section 6.2 describes di�erent strategies

to apply a set of rearrangement rules.

E-SPLICE and ADE utilize cost functions to rank the e�ciency of equivalent im-

plementations of an algorithm. E-SPLICE measures the number of additions and the

number of multiplications, whereas ADE also takes the amount of memory needed

into account. Given a cost function, rearrangement rules can be applied until a

97

Extending System Properties in E-SPLICE and ADE

better or even optimal implementation is discovered. ADE uses heuristics to reduce

the number of equivalent implementations (called the equivalence space) that it gen-

erates. The MDSPPs use heuristics as well, as discussed in Section 6.3.

6.1 Extending System Properties in E-SPLICE

and ADE

In order to prevent a combinatoric explosion in the number of rearrangement rules, E-

SPLICE and ADE base many of their rearrangement rules on system properties such

as those given earlier in Table 2.2 (c.f. Appendix D of [8]). These system properties

extend naturally to higher dimensions. The MDSPPs add the properties DISCRETE

and CONTINUOUS to distinguish the domain of the input signals. This was not an

issue in E-SPLICE and ADE because they only supported discrete-time signals. We

have also introduced the properties LINEARPHASE and DELAY because they are impor-

tant parameters in image processing and communications, respectively. Another new

property, SEPARABLE, indicates if a multidimensional operation can be decomposed

into separable one-dimensional operations. Table 6.1 lists the properties that the

MDSPPs implement.

To complement their property-based rules, E-SPLICE and ADE introduce rules

to capture special relationships between operators. The rules containing operators

that are separable in multiple dimensions can be updated easily. Most of the rules,

however, do not fall into this category because they contain downsampling, upsam-

pling, or �ltering operations which are not always separable in multiple dimensions.

Chapter 3 discusses in detail the rules for rewriting cascades of multidimensional

multirate operations, which have been encoded in the MDSPPs.

98

Extending System Properties in E-SPLICE and ADE

System Property Meaning
ASSOCIATIVEy can change grouping of inputs
ADDITIVEy distributes over addition
COMMUTATIVEy can change order of inputs
CONTINUOUS inputs are continuous signals
DELAY amount of delay before output is meaningful

DISCRETE inputs are discrete signals
HOMOGENEOUSy scaled input gives scaled output
LINEARy additive and homogeneous
LINEARPHASE true if the frequency phase response is a linear

function of the frequency variable

MEMORYLESSy output does not depend on previous inputs
or outputs; if a single-input system, then
SHIFTINVARIANT

SEPARABLE true if separable in all dimensions, false if
completely non-separable, or a list of variables
in which the operator is separable

SHIFTINVARIANTy shifted input gives shifted output

y property also included in E-SPLICE [8]

Table 6.1: System Properties in the MDSPPs

99

Algorithm Rearrangement

6.2 Algorithm Rearrangement

In rearranging operations in an algorithm, both simpli�cation and rearrangement

rules are applied to the algorithm. Simpli�cation rules produce more e�cient algo-

rithms through the removal of one or more components (e.g. a shift by l undoes a

shift by �l). Rearrangement rules produce di�erent but not necessarily better im-

plementations. For linear systems, some rearrangement rules can be based on system

properties (e.g. the order of two linear shift-invariant operators can be switched), but

most rules are expressed in terms of speci�c operators (e.g. the cascade of two shift

operators can be rewritten as one shift operator whose shift is the sum of the two

original shift factors).

6.2.1 General Procedure

The procedure to rewrite algorithms is iterative. At each iteration, the �rst step

is to determine which rearrangement rules apply, beginning at the output(s) of the

algorithm. The search for applicable rules may continue until the input(s) to the

algorithm is reached. Then, the algorithm is rewritten by applying one or more of

the rules. Finally, at each iteration, each equivalent form of the algorithm is simpli�ed.

The end result is a tree of equivalent forms.

In determining which rules may apply to an algorithm, rules that would produce

an expression that has already been generated would not be considered. If maintaining

parallelism in a part of the algorithm is important, then rules would have to apply

to every branch in a parallel structure (called a regularity constraint in ADE). Once

a collection of candidate rules has been determined, the procedure could apply all of

them to the algorithm which would likely create a tree that would grow exponentially

in size. The other extreme is to apply only one rule at each iteration (e.g. choose one

at random). These two opposing strategies correspond to a breadth-�rst search and a

depth-�rst search, respectively, through the equivalence space (the tree of equivalent

100

Algorithm Rearrangement

implementations). Clearly, the second approach would be sub-optimal, but the �rst

approach may not �nd the optimal solution in a reasonable amount of time.

6.2.2 Rearranging AMultidimensional Rational Rate Changer

A simple example of algorithm rearrangement is a structure to change the two-

dimensional sampling rate �rst by upsampling the input signal x[n1; n2] by

2
4 6 8

3 3

3
5

and then by downsampling the result by

2
4 9 12

7 7

3
5. In the MDSPPs, the structure

would be written as a nested algebraic expression:

Downsample[{{9, 12}, {7, 7}}, {n1,n2}] [

Upsample[{{6, 8}, {3, 3}}, {n1,n2}][x[n1,n2]]]

The rearrangement rule shown in Figure 3.12(a) will seek to decompose up/downsampling

cascades by �rst factoring the up/downsampling matrices into their Smith forms and

then by removing redundant resampling operations. In this case,2
4 6 8

3 3

3
5 =

2
4 2 0

0 3

3
5
2
4 3 4

1 1

3
5

2
4 9 12

7 7

3
5 =

2
4 3 0

0 7

3
5
2
4 3 4

1 1

3
5

so the common right unimodular matrix can be removed, thereby making the resam-

pling separable:

Downsample[{{3, 0}, {0, 7}}, {n1,n2}] [

Upsample[{{2, 0}, {0, 3}}, {n1,n2}][x[n1,n2]]

Another rearrangement rule decomposes separable multidimensional resampling op-

erations into one-dimensional resampling operations:

Downsample[3, n1][Downsample[7, n2][

Upsample[2, n1][Upsample[3, n2][x[n1,n2]]]]]

Applying the rearrangement rule that commutes downsamplers in cascade and an-

other that commutes upsamplers in cascade, we ultimately get

101

Finding Optimal Algorithms

Upsample[2, n1][Downsample[3, n1][

Upsample[3, n2][Downsample[7, n2][x[n1, n2]]]]]

The overall rate change is the product of the original downsampling matrix and the

inverse of the upsampling matrix:

2
4 9 12

7 7

3
5
2
4 6 8

3 3

3
5
�1

=

2
4 3

2
0

0 7

3

3
5

6.3 Finding Optimal Algorithms

Adding the ability to measure the performance of equivalent forms of algorithms

can help guide the rearrangement process to search for better implementations. At

each iteration in the depth-�rst search strategy for applying rearrangement rules, the

lone rule could be chosen as the one among the candidates that produces the best

new implementation. When no more rules apply, the best implementation would

be chosen from all of the equivalent forms generated. For the breadth-�rst search

strategy, candidate rules could be pruned by only selecting those that will produce

an algorithm with a lower cost or increase the cost over the current (or original)

algorithm by no more than some factor.

Both E-SPLICE and ADE implement cost functions to rank equivalent algo-

rithms [77]. E-SPLICE counts only the number of additions and multiplications

times the sampling rate. ADE also counts the number of memory elements (which is

independent of the sampling rate). The MDSPPs measure all three costs. In multiple

dimensions, however, the sampling rate is no longer a real number but instead a real-

valued matrix. The MDSPPs measure the number of additions and multiplications

times the average output sampling rate.

Unlike E-SPLICE and ADE, the MDSPPs can associate a range of values with a

free parameter. The implementation cost of linear operators for each free parameter

either monotonically increases or monotonically decreases for each free parameter.

102

Summary

When one free parameter is allowed to take values over an interval, the associated

implementation cost for an operator depending on that free parameter also takes

values over an interval. Even when an operator depends on two or more such free

parameters, the cost function still takes values over an interval. As a consequence,

the implementation cost of two algorithms can be compared in terms of intervals.

6.4 Summary

The primary goal behind rearranging the form of an algorithm is to �nd a better

implementation of algorithm. To �nd better implementations, a computer program

needs a set of simpli�cation and rearrangement rules as well as a function to measure

the implementation cost of an algorithm. When applied, simpli�cation rules will

produce a better implementation because they remove inverse operations that appear

in cascade. Rearrangement rules, on the other hand, simply replace a part of an

algorithm by an equivalent form that may or may not be more e�cient.

E-SPLICE and ADE express some rearrangement rules for one-dimensional sys-

tems in terms of system properties, but the majority are based on speci�c operators.

Since system properties (such as linearity) extend to higher dimensions, we have

recast the rearrangement rules based on system properties for multidimensional sys-

tems. We also add new properties and base new rules on them. In Chapter 3, we

derive the special case rules in multiple dimensions. We also extend the simpli�cation

rules present in E-SPLICE and ADE to multiple dimensions.

In computing computational cost for one-dimensional multirate algorithms, the

number of additions and multiplications is scaled by the sampling rate. For multiple

dimensions, the computational cost depends instead on the sampling matrix instead

of the sampling rate. The other costs (such as the amount of memory elements) are

independent of the sampling rate and extend naturally to higher dimensions.

103

CHAPTER 7

Generating Equivalent

Code for Algorithms

As the previous two chapters show, symbolic reasoning can assist the engineer in

designing algorithms with a relatively small number of free parameters and intercon-

nections (see Figure 5.6, for example). Because we implement reasoning on mathe-

matical formulas, we do not have a convenient way to represent the many connections

in complex systems. The layout of complex systems is better captured graphically by

tools that can organize block diagrams hierarchically.

Generating equivalent code for developed algorithms is essential to transport

the algorithm to another environment for layout, typesetting, further simulation,

and so forth. Speci�cally, the MDSPPs translate signal processing expressions into

TEX document processing commands [78] and Ptolemy block diagram representations

[13, 14, 15, 16]. We have chosen TEX because it is a typesetting tool commonly used

by engineers to document designs, write reports, etc. We have chosen the Ptolemy

environment because it can represent complex systems and simulate algorithms as

well as generate C programs, DSP assembly language code, and VHDL descriptions.

The ability to generate Ptolemy code places the MDSPPs in the rapid prototyping

process shown earlier in Table 1.1.

7.1 Generating TEX Code

TEX, a typesetting language developed by Donald Knuth, formats text and equations

in a standard way for publication. When formatting equations, TEX displays mathe-

104

Generating TEX Code

matical formulas according to the conventions de�ned by the American Mathematical

Society. When typesetting text, TEX follows standard rules followed by printers. We

have chosen TEX as a target environment because it is commonly used by engineers

to document projects, write technical reports, etc.

An inherent ability of Mathematica is to translate a single algebraic expression

into a TEX equation. These equations can then be spliced into existing documents.

Ideally, this automatic translation eliminates the possibility of errors that can occur

while retyping a formula.

For example, TeXForm[t^2] gives {t^2} which is interpreted as t2 once the

expression is put into a TEX math environment (i.e. surrounded by dollar signs).

A more complicated example is the input-output relationship of a two-channel non-

uniform �lter bank shown in Figure 5.6(c). We �rst had Mathematica factor the

expression in a meaningful way and then called TeXForm to generate the equation.

In the extendedMathematica environment, the multidimensional signal process-

ing packages contain the TEX de�nitions for signals and systems they introduce. For

example,

TeXForm[Downsample[2,n][x[n]]]

generates one line of TEX code \downarrow_{2,n}(x[n]) which, after TEX process-

ing, gives #2;n (x[n]). For a more complicated example, we will use the time domain

description of the two-channel non-uniform �lter bank shown in Figure 5.6(b):

TeXForm[upperchannel + lowerchannel]

gives

g1 (n)?n "3;n (#3;n (h1 (n) ?n x(n)))+ #2;n (g0 (n)?n "3;n (#3;n (h0 (n)?n "2;n (x(n)))))

Note that ?n means convolution in the variable n. The impulse response of the �lters

are not subscripted here as we did not encode a rule to print g0 as g0.

105

Generating Complete Ptolemy Simulations

7.2 Generating Complete Ptolemy Simulations

We now consider issues involved in converting a set of mathematical formulas into a

complete working program. In our case, we are ultimately concerned with converting

a set of mathematical formulas into its Ptolemy block diagram speci�cation with the

option of generating additional code to direct the running of a complete simulation,

as is discussed in Section 7.2.2. First, Section 7.2.1 examines the general problem of

converting formulas to a complete high-level program.

7.2.1 Program Synthesis

Like its ability to generate TEX code, Mathematica can convert a formula into its

equivalent C or Fortran code via the CForm and FortranForm commands, respectively.

With a high-level programming language comes the additional problem of linking

routines to libraries. Code generated by Mathematica will have the correct syntax,

but it may not contain valid function calls. For example, CForm[t^2] produces

Power(t,2). In order for such a statement to compile properly, one must either de�ne

a C macro to preprocess Power into the proper function say pow or provide a library

function called Power. Alternately, one can program Mathematica to generate the

proper function call. In our example, we want CForm to translate the power function

in Mathematica to the pow function in the C math library:

Unprotect[Power, pow];

Clear[pow];

Format[Power, CForm] := pow;

Protect[Power, pow];

Now, CForm[t^2] would return pow(t,2).

Even once we provide all of these missing \hooks" to the target language, we can

only generate lines of code that will compile properly. We still do not have the abil-

ity to generate subroutines, and therefore, we cannot create complete programs from

106

Generating Complete Ptolemy Simulations

scratch. SINAPSE, developed at the Schlumberger Laboratory for Computer Science,

is an example of a system that uses Mathematica to generate complete programs

[79, 80, 81]. SINAPSE translates a set of partial di�erential (wave) equations with

boundary conditions into �nite di�erence approximations. From the �nite di�erence

approximations, SINAPSE generates optimized Fortran-77, Connection MachineTM

Fortran, or C source code. Complete source code generation takes on the order of

10 minutes on a Sun SparcStation 2. SINAPSE directs the user in choosing the

wave phenomena, the boundary conditions, the �nite di�erence technique, the tar-

get language, and the target machine (either a sequential computer or the parallel

Connection Machine).

7.2.2 Converting Algebraic Formulas to Working Ptolemy

Simulations

As previously mentioned, we would like to translate signal processing algorithms

expressed as mathematical formulas to the Ptolemy environment so that the MDSPPs

can �t into a rapid prototyping process. Ptolemy has both a graphical user interface

and a command line interpreter. The command line interpreter is the actual target

for code generation.

Ptolemy represents systems using block diagrams. Unlike a high-level language,

Ptolemy does not support nested function calls. Therefore, we must unravel nested

calls in an algebraic formula to decompose it into a sequence of simple block opera-

tions. A simple block operation consists of a set of inputs, one function call, and a

set of outputs.

In Mathematica, the PtolemyProgram command converts an algebraic formula

to a complete Ptolemy simulation; its algorithm is given in Figure 7.1. The order and

syntax of the information given to the PtolemyProgram routine mimics the calling

sequence of the various plotting commands in Mathematica:

routine [expression, fv, vmin, vmaxg, options]

107

Generating Complete Ptolemy Simulations

The pre-processing converts impulse responses of �lters that appear in convolution

operators into �ltering operations and maintains the names of the original constants

so that they will appear as the same name in the Ptolemy code. The Ptolemy code

can then be edited at a future time to insert new values for the constants.

Since the generated Ptolemy program will ultimately be interpreted and run,

we must specify a header for the program that will de�ne the signals and systems

commonly used in the MDSPPs but missing in Ptolemy's library. We provide a default

header simply called \header.pt" which will either be loaded by the Ptolemy program

as its �rst step or be copied verbatim to the beginning of the Ptolemy program (the

default). In the �rst case, the global parameter $PtolemyProlog must be set to

StringJoin["(load \"",

FindFile["SignalProcessing`ObjectOriented`header.pt",

$Path],

"\")"]

The default behavior allows the output of the PtolemyProgram routine to be piped

to a computer (possibly on a separate network) that runs Ptolemy. Ptolemy runs

simulations by incrementing a
oating-point counter over a range of values. As a

part of the code generation, we de�ne the counter and connect it to the variables over

which to run the simulation. The primary part of the conversion process decomposes

the algebraic expression into simple block operations and then translates simple block

operations into a sequence of Ptolemy commands. Once the block operations have

been converted into Ptolemy form, we add Ptolemy code to run the simulation.

The example to demonstrate the code generation ability is the two-channel non-

uniform �lter bank of Figure 5.6. Figure 7.2 draws the schematic of the �lter bank,

gives the Mathematica code representing the system, and adds theMathematica com-

mands necessary to invoke the simulation. In order for the simulation to run, we

must specify the analysis/synthesis �lters and the input signal x[n]. We use the �l-

ters designed in [82] so that the �lter bank achieves near perfect reconstruction of

108

Generating Complete Ptolemy Simulations

� Given

{ an algebraic expression parsed into tree form with variables as
leaves and operators as nodes

{ a list of each fvariable, minimum value, maximum value,
incrementg over which to run the simulation (the increment if
not speci�ed defaults to 1)

{ optionally, a list of values to assign to constants that appear in
the algebraic expression (the assignment will take place in the
generated Ptolemy code)

� Pre-process the algebraic expression by

{ converting LSI convolution operations to �ltering operations

{ extracting constants from the algebraic expression (constants are
symbols that the user has not speci�ed as variables)

� Generate a complete Ptolemy simulation by

{ determining the Ptolemy code to use as the prolog

{ generating code that will allocate constant terms appearing in
the expression, assigning to them the value given by the user
(see above) or one if a value was not speci�ed

{ generating code that will allocate variables

{ generating code that will de�ne the algorithm by

� converting the algebraic expression to block diagram form

� converting the block diagram form to Ptolemy code

{ generating code to invoke the simulation

Figure 7.1: Algorithm to Convert Algebraic Expressions to Ptolemy Simulations

109

Generating Complete Ptolemy Simulations

x[n]

- "n 2 - h0[n]
- #n 3 - "n 3 - g0[n]

- #n 2

?

- h1[n]
- #n 3 - "n 3 - g1[n]

6

� �
� �
+ -

x̂[n]

(a) Flow graph

upperchannel =

Downsample[2,n][

Convolve[n][g0[n], Upsample[3,n][

Downsample[3,n][

Convolve[n][h0[n],

Upsample[2,n][x[n]]]]]]]

lowerchannel =

Convolve[n][g1[n], Upsample[3,n][

Downsample[3,n][Convolve[n][h1[n], x[n]]]]]

(b) Representation in the new environment

h0[n] = FIR[n, Hold[ReadList["ptolemy/h0", Number]]];

h1[n] = FIR[n, Hold[ReadList["ptolemy/h1", Number]]];

g0[n] = FIR[n, Hold[ReadList["ptolemy/g0", Number]]];

g1[n] = FIR[n, Hold[ReadList["ptolemy/g1", Number]]];

x[n] = Cos[2 Pi n / 3] Sinc[Pi n / 6] / 3;

PtolemyProgram[upperchannel + lowerchannel, {n, 1, 100},

Dialogue -> All] >> "!interpreter"

(c) Speci�cation of �lters and input signal

Figure 7.2: Ptolemy Simulation of Filter Bank Run From Within Mathematica

110

Generating Complete Ptolemy Simulations

the input signal. The �lter coe�cients will be read by Ptolemy when it runs the

simulation (the Hold command prevents Mathematica from evaluating the ReadList

command which would read the �les in before code generation). We want to choose

the input signal x[n] to test the reconstruction properties of the �lter bank. The �lter

bank decomposes the input frequency band into (�2

3
�; 2

3
�) for the upper channel and

(��;�2

3
�)[(2

3
�; �) for the lower channel. So, one suitable choice for x[n] is a bandpass

signal having frequency content in the range of frequencies (�5
6
�;�1

2
�)[(1

2
�; 5

6
�). By

setting the amplitude to be 1 over these bands, we can ask the MDSPPs to generate

the time response of the bandpass signal. as shown in Figure 7.3. The intermediate

block diagram form, which unravels the nested operations in the algorithm, is shown

in Figure 7.4. The generated Ptolemy code is listed in Appendix A.1.

7.2.3 Code Generation After Algorithm Rearrangement

If the analysis/synthesis �lters are implemented as either FIR or IIR �lters, then

the MDSPPs can �nd better implementations of the two-channel �lter bank. Using

the default cost function, which counts the number of additions, multiplication, and

memory elements, a much better implementation results after rewriting each analysis

and synthesis channel in its polyphase form:

upperchannel =

PolyphaseResample[2, FIR[n, Hold[ReadList["ptolemy/g0",Number]]], 3, n][

PolyphaseResample[3, FIR[n, Hold[ReadList["ptolemy/h0",Number]]], 2, n][

x[n]]];

lowerchannel =

PolyphaseUpsample[3, FIR[n, Hold[ReadList["ptolemy/g1",Number]]], n][

PolyphaseDownsample[2, FIR[n, Hold[ReadList["ptolemy/h1",Number]]], n][

x[n]]];

By speci�ng the same input x[n] as in Figure 7.2(c), the Ptolemy simulation is

111

Generating Complete Ptolemy Simulations

In[14]:= freqResponse =

CPulse[Pi/3, w + 5 Pi/6] + CPulse[Pi/3, w - Pi/2]

-Pi 5 Pi

Out[14]= CPulse [--- + w] + CPulse [---- + w]

Pi/3 2 Pi/3 6

In[15]:= timeResponse = InvDTFTransform[freqResponse, w, n]

(-2 I)/3 n Pi n Pi (2 I)/3 n Pi n Pi

E Sinc[----] E Sinc[----]

6 6

Out[15]= ------------------------- + ------------------------

6 6

In[16]:= SPSimplify[timeResponse, Variables -> n]

2 n Pi n Pi

Cos[------] Sinc[----]

3 6

Out[16]= ----------------------

3

Figure 7.3: Deriving the Input Bandpass Signal for the Filter Bank Simulation

112

Generating Complete Ptolemy Simulations

rationalconst1 := 1/3

timesconst1 := 2 Pi / 3

timesconst2 := Pi / 6

timesbyconstant1 := n timesconst1

cos1 := Cos[timesbyconstant1]

timesbyconstant2 := n timesconst2

sinc1 := Sinc[timesbyconstant2]

times1 := cos1 sinc1

timesbyconstant3 := rationalconst1 times1

upsample1 := Upsample [timesbyconstant3]

2,n

fir1 := FIR[n, Hold[ReadList[ptolemy/h0, Number]]][upsample1]

downsample1 := Downsample [fir1]

3,n

upsample2 := Upsample [downsample1]

3,n

fir2 := FIR[n, Hold[ReadList[ptolemy/g0, Number]]][upsample2]

downsample2 := Downsample [fir2]

2,n

fir3 := FIR[n, Hold[ReadList[ptolemy/h1, Number]]][

timesbyconstant3]

downsample3 := Downsample [fir3]

3,n

upsample3 := Upsample [downsample3]

3,n

fir4 := FIR[n, Hold[ReadList[ptolemy/g1, Number]]][upsample3]

plus1 := downsample2 + fir4

Figure 7.4: Block Diagram Form of the Two-Channel Filter Bank

113

Summary

invoked by

PtolemyProgram[upperchannel + lowerchannel, {n, 1, 100},

Dialogue -> All] >> "!interpreter"

The Ptolemy code for this more e�cient �lter bank structure is given in Appendix

A.2.

7.3 Summary

This chapter demonstrates the ability of the MDSPPs to convert an algorithm com-

posed of a set of mathematical formulas into either a set of equivalent lines of TEX

code for typesetting or a complete Ptolemy program. Ptolemy program generation

is necessary for the environment to take part in rapid prototyping because the al-

gorithm can easily be embedded into a complex system. The complex system, once

simulated in Ptolemy, can then be translated into a C program or DSP assembly lan-

guage program. Until recently, Ptolemy has only o�ered limited abilities to process

images [15]. Now, it supports multidimensional scheduling [16] so generating code for

multidimensional multirate algorithms should be possible.

114

CHAPTER 8

Interactive Design of Two-Dimensional

Decimation Systems

This chapter demonstrates the ability of the multidimensional signal processing pack-

ages (MDSPPs) to design a two-dimensional rational decimation system based on

knowledge of the input signal's passband. The rational decimation system, which is

drawn in Figure 8.1, resamples the bandlimited input signal at its Nyquist rate by

expanding its frequency content to �ll the entire fundamental frequency tile !1 2
[��; �) S !2 2 [��; �). In this chapter, we represent the bandlimited frequency

content as either a polygon or a rational resampling matrix. By representing the

passband as a polygon, the user is free to de�ne passbands with arbitrary shapes,

either by sketching the shape on a graph with a mouse or by typing the coordinates

of the vertices manually. In the alternate representation as a rational resampling

matrix, the passband is formed by mapping the fundamental frequency tile by the

inverse of the transpose of the rational resampling matrix. Under this mapping, the

passband becomes a parallelogram whose vertices are rational multiples of �.

- m
�

6

exp(j n0 � n)

- "n L - h[n] - #n M -

Figure 8.1: Flow Graph of a Two-Dimensional Decimator

115

Theory Underlying Decimator Design

Section 8.1 describes the theory underlying the design of two-dimensional deci-

mators when given a passband of arbitrary shape. The design procedure requires four

steps, each of which is realized by a routine in the MDSPPs. The four subroutines are

combined into one DesignDecimationSystem command. Implementing the underly-

ing theory requires a computing system that performs exact precision arithmetic and

supports a polygon data structure. Section 8.2 gives three decimator design examples:

a quincunx decimator, a decimator for a sketched passband, and a decimator for a

circularly bandlimited signal.

8.1 Theory Underlying Decimator Design

This section discusses the theory behind the design of rational decimation systems.

Rational decimation systems resample bandlimited input signals at their Nyquist

rates. The extent of the frequency domain of the input signal is described either by

a list of coordinates that form the vertices of a polygon or by a rational resampling

matrix H. From a polygonal representation, the design procedure

1. computes the minimal rectangle with
oating-point coordinates that circum-

scribes the passband,

2. �nds the parallelogram whose coordinates are rational multiples of �, whose

area is minimal, and whose extent includes the minimal rectangle,

3. shifts the center of the parallelogram to the origin,

4. de�nes the rational resampling matrix H that maps the parallelogram onto the

fundamental frequency tile, and

5. factors the rational matrix H into two integer matrices L and M .

We implement Step 4 according to [83]. For Step 5, we factor the rational resampling

matrix H by �rst decomposing H into its Smith-McMillan form and then collecting

116

Theory Underlying Decimator Design

terms:

H = U �V = U ��1
L �M V =

�
�L U

�1
��1

(�MV) = L�1M (8:1)

So, L = �L U
�1 and M = �MV . The diagonal elements of �L are the inverse of the

denominators of the diagonal elements of �, and the diagonal elements of �M are the

numerators of the diagonal elements of �. Since the rational numbers along the diag-

onal elements of � have already been reduced by the SmithMcMillianForm routine,

�L and �M are relatively prime (on the right and the left), and therefore, so are L and

M . Because L and M are relatively prime, polyphase implementations always exist

for our rational decimator designs (see Figure 3.15 and [52]). Commutativity of L

and M is not required for a polyphase implementation, but L and M can sometimes

be adjusted so that their matrix products commute while maintaining their relative

primeness. Letting L = T �L U
�1 and M = T �M V , the matrix products commute

if �L V U = V U �L then T = U or if �M V U = V U �M then T = V �1. The rest of

this section discusses the computations involved in Steps 1 and 2.

Step 1 of the design procedure �nds the rectangle of minimal area that circum-

scribes the passband. For each polygon edge, the polygon is rotated so that the

current edge would lie on the x-axis. The rectangle of smallest area that circum-

scribes the rotated polygon is then computed by �nding the minimum and maximum

coordinates of the rotated vertices. Once all E polygon edges have been processed,

the rectangle with the smallest area is then chosen. Step 1 requires O(E2) arithmetic

operations and O(E2) min and max operations.

From the rectangle computed in Step 1, Step 2 �nds the parallelogram with min-

imal area that circumscribes the rectangle. Unlike the coordinates of the rectangle's

vertices, each coordinate of the parallelogram's vertices must be a rational number

times �. The procedure �rst sorts the vertices of the rectangle such that the �rst

vertex is the upper left corner and the other vertices are in clockwise order. Then,

the procedure rationalizes the division of three of the four rectangle coordinates with

� (e.g. the coordinates of the upper left corner of the rectangle would decrease in the

117

Design Examples

x and increase in the y direction), and the fourth coordinate is computed from the

other three so as to make sure that the bounding region is a parallelogram. Next, the

procedure checks to make sure that all of the parallelogram vertices are outside, or

on the boundaries of, the rectangle. If this condition does not hold true for all of the

parallelogram vertices, then we shift the original parallelogram vertices in a clockwise

direction and check again. If one or more parallelogram vertices is still inside the

rectangle, then the parallelogram is shifted counter-clockwise. The procedure �nishes

when a valid parallelogram is found.

8.2 Design Examples

This section describes the automatic design of three di�erent rational decimators that

share the structure shown in Figure 8.1:

� a decimator for a diamond-shaped baseband (Figure 8.2),

� a decimator for an arbitrarily-shaped baseband (Figure 8.3), and

� a decimator for a circular baseband (Figure 8.4).

In all three cases, the baseband of the input signal is described by a polygon whose

vertices were either sketched by placing points on the fundamental frequency tile with

a mouse (as in Figures 8.2 and 8.3) or generated by a formula (as in Figure 8.4).

We have written a new routine called DesignDecimationSystem that designs a

two-dimensional decimator given the passband represented by either a polygon or a re-

sampling matrix. When given a polygon as its input, the DesignDecimationSystem

routine �rst �nds the rectangle with minimum area that circumscribes the poly-

gon. Then, it computes the parallelogram that circumscribes the minimal rectangle

yet has vertices that are rational numbers times � (the upper limit on the value

of denominator of the rational numbers is controlled by the Mod option). Next, the

DesignDecimationSystem routine shifts the center of the paralellogram to the origin,

118

Design Examples

and the amount of the shift is the n0 vector in the modulator (see Figure 8.1). Based

on the theorems in [83], DesignDecimationSystem then calculates the rational matrix

that maps the shifted parallelogram onto the fundamental frequency tile, i.e. maps the

parallelogram's vertices to the vertices f(��; �); (�; �); (�; ��); (��; ��)g. The

rational matrix is then factored into L�1M which gives the upsampling matrix L and

the downsampling matrixM .

Each �gure in this section contains the output of threeMathematica commands.

The �rst two de�ne and plot the baseband of the input signal as a polygon. The

third command, a call to DesignDecimationSystem, produces two plots: the base-

band superimposed on the minimal rectangle bounding the baseband (in the upper

right portion of the �gure) and the baseband superimposed on the parallelogram

bounding the minimal rectangle (in the lower right portion of the �gure). In these

plots, the baseband is shaded grey, and the visible portions of the bounding rect-

angle and parallelogram are shown in black. The DesignDecimationSystem routine

reports the packing e�ciency and the input-output compression ratio obtained by

the decimation system. The compression ratio is de�ned as the area of the bound-

ing parallelogram divided by the area of the fundamental frequency tile (4�2). The

DesignDecimationSystem routine returns the parameters of the rational decimation

system: the modulation shift n0, the upsampling matrix L, and the downsampling

matrix M .

Figure 8.2 illustrates the design of a rational decimation system for a sketched

passband that is nearly quincunx. The �tted rectangle in the �nal plot is a quincunx

passband. Since the upsampling matrix has a determinant of one, it serves only

to rotate the passband to the proper shape so that the downsampler will map the

passband onto the entire fundamental frequency tile.

Figure 8.3 shows the automatic design of a rational decimation system for an

arbitrarily-sketched baseband. In this case, the bounding rectangle and the bounding

parallelogram actually extend beyond the fundamental frequency tile. Therefore, the

119

Design Examples

poly = Polygon[
(* paste points below and evaluate expression *)
{{0.006425, 3.042108}, {3.016461, 0.015067},
{0.006425, -3.097004}, {-3.054628, 0.015067}}
];

Show [Graphics[{ RGBColor[1,1/2,0], poly }],
 AspectRatio -> 1, Axes -> True,
 Frame -> True,
 FrameTicks -> { piTicks, piTicks },
 PlotRange -> {{-Pi, Pi}, {-Pi, Pi}}]

0 π−π

0

π

-Graphics-

{ shift, upMatrix, downMatrix } =
 DesignDecimationSystem[
 poly, Dialogue -> All, Mod -> 10]

Best packing efficiency with rotated rectangle

 having real-valued coordinates: 98.6%

0 π−π

0

π

Actual packing efficiency: 94.4%

 (out of a best possible 98.6%)

0 π−π

0

π

The compression ratio is 2-to-1.

{{0, 0}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 2}}}

This example �nds the two-dimensional ra-

tional decimator to resample a diamond-

shaped passband at its Nyquist rate. The

four vertices of the polygon de�ning pass-

band were chosen graphically so the pass-

band is not exactly a rotated square. From

the polygon, DesignDecimationSystem

computes the modulator shift n0 and

the up/downsampling matrices L and M

for the decimator structure shown in the

previous �gure. This decimation sys-

tem achieves a compression ratio of 2-

to-1 (j detM j=j detLj = 2). Since

DesignDecimationSystem always renders

the circumscribing rectangles behind the

baseband, the rectangles appear here as

black outlines because they �t the passband

so closely.

n0 = (0; 0)

L =

�
1 0

1 1

�

M =

�
1 1

0 2

�

Figure 8.2: Automatic Design of a Quincunx Decimator

120

Summary

frequency content of these bounding regions wraps around to lower frequencies. The

original coordinates of the parallelogram are used in the computation of the shift

vector and the rational sampling matrix L�1M .

Figure 8.4 demonstrates the ability of our method to achieve good compression

for circularly bandlimited signals. Slightly better compression could be achieved

by circumscribing the circular passband with a regular hexagon. For the regular

hexagon, the maximumpacking e�ciency is 86.6% for a hexagonal cell [53], compared

to a maximum packing e�ciency of 78.5% for our method. Note that the packing

e�ciency for the decimator in Figure 8.4 is higher than 78.5% because the input

baseband is a polygon that approximates a circular passband.

8.3 Summary

This chapter demonstrates the automatic design of the components of two-dimensional

decimation systems (having the structure shown in Figure 8.1) to resample a bandlim-

ited input signal at its Nyquist rate. For the design procedure, the passband of the

input signal is described as a polygon. From the vertices of polygon, the procedure

�rst �nds the rectangle with minimum area that circumscribes the polygon. Then, it

computes the parallelogram whose vertices are pairs of rational numbers times � and

whose extent includes the minimal rectangle. Next, the procedure shifts the center

of the paralellogram to the origin to �nd n0. For the next step, the procedure uses

the ideas in [83] to map the shifted parallelogram onto the fundamental frequency

tile by means of a rational matrix. Finally, we factor the rational matrix into its

Smith-McMillan form so that we can choose L and M such that L�1M equals the

resampling matrix. Because of the way in which we use the Smith-McMillan form, L

andM are always relatively prime on the left (see Section 3.1.5) so e�cient polyphase

forms for our decimator designs always exist.

We have implemented the design procedure in the DesignDecimationSystem

121

Summary

poly = Polygon[
(* paste points below and evaluate expression *)
{{-2.846744, -0.443421}, {-2.950194, -0.081346},
{-2.743294, 0.50487}, {-2.226045, 1.091086},
{-1.777762, 1.470402}, {-1.191546, 1.953168},
{-0.81223, 2.280759}, {-0.312222, 2.694558},
{0.118819, 2.987666}, {0.618826, 3.056633},
{1.032626, 2.798008}, {1.032626, 2.298001},
{0.877451, 1.815234}, {0.515377, 1.332469},
{0.118819, 0.901428}, {-0.536364, 0.453145},
{-0.932921, 0.177279}, {-1.450171, -0.115829},
{-2.053628, -0.339971}}
];

Show [Graphics[{ RGBColor[1,1/2,0], poly }],
 AspectRatio -> 1, Axes -> True,
 Frame -> True,
 FrameTicks -> { piTicks, piTicks },
 PlotRange -> {{-Pi, Pi}, {-Pi, Pi}}]

0 π−π

0

π

-Graphics-

{ shift, upMatrix, downMatrix } =
 DesignDecimationSystem[
 poly, Dialogue -> All, Mod -> 10]

Best packing efficiency with rotated rectangle

 having real-valued coordinates: 78.7%

0 π−π

0

π

Actual packing efficiency: 63.6%

 (out of a best possible 78.7%)

0 π−π

0

π

The compression ratio is 80-to-21.

 -Pi 7 Pi
{{---, ----}, {{21, -21}, {-4, 5}}, -- ---
 4 20

 {{92, 4}, {-20, 0}}}

This example �nds the two-dimensional

rational decimation system to resample

the passband shown directly above at its

Nyquist rate. The parts of the circumscrib-

ing rectangle and parallelogram that extend

outside of the fundamental frequency tile

wrap around because the tile is periodic

with period 2� in each frequency variable.

This rational decimation system achieves a

compression ratio of about 4-to-1 (
jdetM j
jdetLj

=
80
21
� 4).

n0 = (
��

4
;
7�

20
)

L =

�
21 �21

�4 5

�

M =

�
92 4

�20 0

�

Figure 8.3: Automatic Design of a Decimator for an Arbitrarily-Shaped Passband

122

Summary

poly =
 Polygon[
 N[Table[{ Cos[theta], Sin[theta] },

 { theta, Pi/10, 2 Pi, Pi/10 }]]
];

Show [Graphics[{ RGBColor[1,1/2,0], poly }],
 AspectRatio -> 1, Axes -> True,
 Frame -> True,
 FrameTicks -> { piTicks, piTicks },
 PlotRange -> {{-Pi, Pi}, {-Pi, Pi}}]

0 π−π

0

π

-Graphics-

{ shiftVector, upMatrix, downMatrix } =
 DesignDecimationSystem[
 poly, Dialogue -> All, Mod -> 10]

Best packing efficiency with rotated rectangle

 having real-valued coordinates: 79.2%

0 π−π

0

π

Actual packing efficiency: 62.6%

 (out of a best possible 79.2%)

0 π−π

0

π

The compression ratio is 8-to-1.

{{0, 0}, {{5, 0}, {7, 1}}, {{2, 14}, {0, 20}}}

This example �nds the two-dimensional ra-

tional decimation system to resample a cir-

cular passband (with radius 1) near its

Nyquist rate. The rational decimator de-

sign achieves an 8-to-1 compression ratio

(j detM j=j detLj = 8). The theoretical up-

per limit on the compression ratio is the

ratio of the area of the fundamental fre-

quency tile (4�2) to the area of the cir-

cle (�) which is 4� (approximately 12.5-

to-1.).

n0 = (0; 0)

L =

�
5 0

7 1

�

M =

�
2 14

0 20

�

Figure 8.4: Automatic Design of a Decimator for Circularly Bandlimited Signals

123

Summary

routine. The Mathematica Notebook interface supports the graphical interaction nec-

essary for the user to sketch the passband of the input signal. We utilize the exact

precision arithmetic operations inMathematica within the DesignDecimationSystem

routine. We chose not to implement the �lter design algorithms in Mathematica that

would have enabled us to design the decimation �lter. In any case, the decimation

�lter has a passband that is a symmetric parallelopiped (i.e. symmetric about the

origin) whose vertices are �L�1Mvi for i = 1 : : : 4 where v is the set of vertices

f(�1; 1); (1; 1); (1;�1); (�1;�1)g which forms a square [83].

Armed with the ability to design a rational decimator based on a given passband

in the frequency domain, a bank of rational decimators can be designed to resample a

union of possibly disconnected passbands. For each pair of passbands, the intersection

of the parallelograms bounding the passbands would have to be taken into account. A

conceptually simple way to take the overlap into account is to remove the intersecting

region from one of the parallelograms and then design the two decimators. A better

way is to use the overlapping region to generate a third decimator to account for the

di�erence between the frequency content of the the decimator pair and the frequency

content of the input signal. The outputs of two decimators can only be added if the

two L�1M terms are equal (i.e. they operate at the output sampling rates). A bank

of rational decimators that cover the fundamental frequency tile without overlapping

is better known as a critically sampled �lter bank [56, 84].

124

CHAPTER 9

Impact on the Engineering Curriculum

The previous four chapters discuss the use of the MDSPPs to analyze, design, and

prototype signal processing algorithms. This chapter reports how the analysis capa-

bilities of the MDSPPs coupled with electronic documents written in Mathematica's

Notebook interface have helped students learn linear systems theory [23, 24, 25].

Computer algebra (CA) systems are well-suited for solving problems that can

be reduced to a set of mathematical formulas. CA environments enable students to

check answers to problems and create their own example problems. These systems

can also be programmed to give the intermediate steps leading to a solution.

In order to solve problems rapidly with a CA program, students must use a mix-

ture of computer and mathematics skills. These skills can develop naturally during an

undergraduate education if CA environments are introduced early in the curriculum.

First-year students at several schools are already using these environments to learn

calculus. Putting CA systems in the classroom will require a restructuring of the

class to integrate computer assignments into the everyday activities of the students.

Professors may also need to make sure that students will not replace thinking and

learning with a dependence on symbolic calculators, much as the professors already

do with respect to pocket calculators.

CA environments are useful to engineering students because CA environments

are pro�cient at factoring polynomials and performing partial fraction decomposi-

tions. Their algebraic abilities enable students to perform node and mesh analysis

of simple resistive networks [85] and RLC circuits [86]. Because of their abilities to

manipulate complex-valued numbers and functions, they can compute phasors for

AC circuits, and their calculus abilities can help students in analyzing and simulating

125

Impact on the Engineering Curriculum

passive and active electrical networks [87]. Those CA environments that can solve

simultaneous non-linear equations are potentially useful in designing active circuits

[88, 89].

A computer algebra program must be customized in order to integrate it into a

signals and systems curriculum. A successful sequence of signals and systems courses

would teach students to grasp

1. the representation of signals as complex numbers, matrices, vectors and poly-

nomials,

2. the representation of systems as mathematical operators that map signals into

other signals,

3. new functions such as step, impulse and sinc functions,

4. new operators such as shifters, modulators and �lters,

5. new symbolic mathematical operations of linear transforms and linear convolu-

tion de�ned for signals, and

6. new graphical representations such as pole-zero diagrams and frequency re-

sponse plots.

CA systems typically address the �rst topic above because they support a variety

of mathematical structures and routines that work on them. These programs also

support most of the continuous functions commonly used in de�ning signals (trigono-

metric, Bessel, exponential, and so forth), but they generally do not understand sinc

functions or piecewise continuous functions such as steps and pulses. Therefore, their

linear transforms do not recognize typical signal processing expressions. Furthermore,

their transforms cannot show the student how to compute the transform by hand,

and their Laplace transforms (and z-transforms if implemented) do not track the re-

gion of convergence. They do not provide routines for linear convolution. For use in

126

Impact on the Engineering Curriculum

graduate signal processing classes, CA environments are further limited because their

linear transforms are typically unilateral and one-dimensional. Lastly, CA programs

provide few of the common graphical representations of signals.

By developing the multidimensional signal processing packages (MDSPPs) in-

troduced in Chapter 4, we have customized the CA program Mathematica to support

many aspects of a signals and systems curriculum. The MDSPPs de�ne signals and

systems missing in the core of Mathematica, as shown earlier in Tables 4.1 and 4.2.

Based on this representation of signals and systems, the MDSPPs implement con-

volution, transforms, signal plotting, signal analysis, and other high-level abilities as

listed in Table 5.2. The plotting routines can help students visualize signals and sys-

tems, whereas the other routines can show the student answers to convolution and

transform problems by hand.

The rest of this chapter discusses the use of the Notebook interface to Mathe-

matica in helping students learn linear systems theory. In Section 2.3, the Notebook

interface was described as a multimedia interface to the Mathematica kernel. By

adding formatted text, graphics, and sound to examples written as Mathematica

commands, Notebooks can become living interactive documents. We have written

Notebooks to

� introduce students to the extended Mathematica environment (Section 9.1),

� teach students key topics in a tutorial format (Section 9.2),

� provide on-line documentation (Section 9.3), and

� empower students to evaluate their own knowledge (Section 9.4)

Section 9.5 evaluates these e�orts at integrating the multidimensional signal process-

ing packages and Notebooks into classes in di�erent disciplines at di�erent universi-

ties.

127

Student Handout

9.1 Student Handout

The student handout was developed to be a user's guide for the juniors and seniors

enrolled in the two required signals and systems courses at Georgia Tech. The courses

use [5] as the primary text. The student handout supplements the text as it shows

students how to use MDSPPs to solve homework problems from the text.

The student handout has undergone three iterations. The �rst section introduces

the student to Mathematica and the MDSPPs. The next two sections discuss how

students in the �rst and second courses would use the MDSPPs to tackle homework

problems. The remaining sections work an example problem in detail, give hints

for commonly encountered errors, and summarize the important signals and systems

de�ned by the MDSPPs. The handout is a collection of six Mathematica Notebooks.

9.2 Interactive Tutorial Notebooks

Using the MDSPPs, Notebooks can provide examples of algebraic forms of signal

processing expressions for the students to evaluate. By adding text, equations, and

graphics explaining these examples, Notebooks can take the form of interactive tuto-

rials. Our tutorial Notebooks arrange information in a hierarchy of sections, subsec-

tions, and so forth. When opening one of the tutorial Notebooks, a student would

see the table of contents. Students can open a section of interest to delve deeper

into a speci�c topic, or they can skim the Notebook sequentially to get an overview.

Students do have the option of searching for keywords (highlighted by the author)

and patterns (chosen by the student).

To date, we have written the following tutorials:

AnalogFilters shows how to design Bessel and classical analog �lters: Butterworth,

Chebyshev, and Elliptic.

128

Interactive Tutorial Notebooks

DTFT teaches the discrete-time Fourier transform (DTFT) by relating it to the dis-

crete Fourier transform (DFT), Fourier series, and the continuous-time Fourier

transform.

PiecewiseConvolution discusses both discrete and piecewise continuous convolu-

tion and demonstrates the mechanics of the \
ip-and-slide" approach to convo-

lution by means of animation.

zTransformI de�nes the bilateral z-transform and introduces the region of con-

vergence (ROC) which is necessary for uniqueness; discussing the ROC leads

naturally into the subject of stability and causality of a signal based on the

location of its poles relative to the ROC.

zTransformII demonstrates relationships between the z-transform and the DTFT.

zTransformIII shows how to choose poles and zeros to construct digital �lters.

Each tutorial contains enough formatted text and equations to introduce the subject.

Their purpose, however, is not to duplicate material already found in textbooks but

instead to enable students to interact with the subject material. Students can explore

the subject by evaluating code, viewing animations, or listening to sound. As an area

of future work, we hope to write tutorial Notebooks on a comprehensive range of

linear systems topics as shown in Table 9.1.

All of the tutorial Notebooks listed above contain animation. In the Notebook

on analog �lter design, for example, the student can visualize the changes in the

�lter's magnitude response as one design parameter varies. The Notebook provides

three animations of magnitude responses| one for a lowpass Butterworth �lter of

varying order, one for a bandpass elliptic �lter with varying ripple and �xed order,

and one for bandpass elliptic �lter with varying ripple and order.

The Notebook on piecewise convolution shows how to break down a general

convolution problem into several smaller convolutions. It also helps the student iden-

tify overlapping intervals by proceeding step-by-step through a simple problem. To

129

Interactive Tutorial Notebooks

Topic Notebook That Covers It

Continuous Convolution PiecewiseConvolution

Laplace transforms

Solving Di�erential Equations

Analog Filter Design AnalogFilters

Continuous Fourier Transforms

Communication Schemes

Discrete convolution PiecewiseConvolution

z-Transforms zTransformI-II

Solving Di�erence Equations

Digital Filter Design zTransformIII

Discrete Fourier Transforms DTFT

Classical Feedback Control *

State-Space Methods *

*
These topics are covered by a set of Notebooks de-

veloped at the Case Western Reserve University to

accompany a controls textbook [90]. The implemen-

tation of control theory relies heavily on the signal

processing packages.

Table 9.1: Coverage of Linear Systems Topics by Tutorial Notebooks

130

Notebooks Serving as On-Line Reference

reinforce the procedure, an animation sequence illustrates the convolution of a trun-

cated ramp x(t) and a pulse h(t) [3, 26]. In the animation sequence, the �rst frame

superimposes the functions. The sixth frame shows h(t � �) for t = 0 which is h(�)

\
ipped" about the � axis. A side bene�t of the sixth frame is that it separates the

two functions being convolved. The remaining frames illustrate the sliding of h(t� �)
across x(�) for di�erent values of t. The �nal frame gives the result of the convolution.

When viewing the animation, Mathematica allows the student to control the frame

rate, freeze the sequence, etc. The student can visualize the important intervals over

which to integrate and observe that the maximumvalue of the output function occurs

when there is maximum overlap between the two functions being convolved.

The z-transform Notebooks contain many animations. Several relate pole-zero

diagrams to magnitude frequency responses| a basic idea behind digital �lter design

[75, 91]. Two animations illustrate the e�ect on the magnitude response of a fourth-

order IIR elliptic �lter when two of its poles are slightly perturbed (see Figure 9.1).

Not only do these animations reinforce the degradation that can result when �lter

coe�cients are quantized, they also show that the poles closest to the unit circle are

the most sensitive to perturbations (such as quantization).

9.3 Notebooks Serving as On-Line Reference

Accompanying the tutorial Notebooks is a set of Notebooks that provide on-line help

and on-line reference.

EducationalTool describes uses of the multidimensional signal processing packages

and Notebooks in colleges and universities with many examples for the student

to evaluate; it is a multimedia version of [23].

README brie
y introduces the multidimensional signal processing packages and

Notebooks.

131

Notebooks Serving as On-Line Reference

-1 -0.5 0.5 1
Re z

-1

-0.5

0.5

1

Im z

O

O

O

O

X

X

X

X

Magnitude Response

-3 -2 -1 1 2 3
w

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-1 -0.5 0.5 1
Re z

-1

-0.5

0.5

1

Im z

O

O

O

O

X

X

X

X

Magnitude Response

-3 -2 -1 1 2 3
w

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-1 -0.5 0.5 1
Re z

-1

-0.5

0.5

1

Im z

O

O

O

O

X

X

X

X

Magnitude Response

-3 -2 -1 1 2 3
w

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Figure 9.1: Animation of Filter Response for Corrupted Poles

Selected frames in an animation showing how a per-
turbation in the radius of the outer pole pair cor-
rupts the magnitude response near the band edge

132

Notebooks for Self-Evaluation

SignalProcessingExamples gives an overview of the signal processing packages

with many examples for the student to evaluate; it is a multimedia version of

[2], but it also contains a history of the di�erent versions of and bug �xes to

the MDSPPs.

SignalProcessingIntroduction introducesMathematica, signal processing, and the

signal processing packages.

SignalProcessingUsage provides complete on-line reference manual for every new

routine, function, and so forth de�ned by the signal processing packages

The README and SignalProcessingIntroduction Notebooks were written to

initiate new users. SignalProcessingExamples and EducationalTool provide

overviews of the signal processing packages and Notebooks, respectively. Signal-

ProcessingUsage provides an on-line reference to all of the new functions, data

structures, and operations.

9.4 Notebooks for Self-Evaluation

In a standard text, students have access to a limited number of example and home-

work problems. Using the Notebook format, professors can write their own example

problems for students to study or complete.

In the Notebook, the instructor can pose questions that require intensive sym-

bolic and numeric computations. Students answer the questions with graphs, text,

and Mathematica code. Once completed, the student could submit the ASCII Note-

book by electronic mail for grading, as is done in some calculus courses [92]. Such

Notebooks could help students learn how to generate their own problems and solutions

in Mathematica.

At North Carolina State University, electrical engineering students are asked to

complete two exercise Notebooks which use the interactive graphics capabilities of

133

Summary

the Notebook interface. The following Notebooks, which do not rely on any exter-

nal packages, guide students through exercises in order to help them evaluate their

knowledge of a topic: [25]

makeconv asks the student to sketch a convolution kernel with lowpass character-

istics which the Notebook checks. The question is repeated for a highpass kernel.

Students can convolve various signals with their own kernels.

polezero asks the student to design four di�erent digital �lters by pole-zero placement

(a sixth-order all-pole bandpass, an all-pole low pass, a better low pass, and a notch

�lter). Students evaluate their choices by inspecting the magnitude response. At

any time, students can have Mathematica check the pole-zero placement.

9.5 Summary

Computer algebra environments are currently being used in the teaching of math-

ematics, physics, and engineering. This chapter discusses the impact of the multi-

dimensional signal processing packages and Notebooks for Mathematica on the en-

gineering curriculum. The extended Mathematica environment is useful in learning

linear systems theory, especially in the areas of communications, controls, and signal

processing. In the MDSPPs, students explore linear systems theory by

� studying the steps the environment takes in solving homework problems,

� interacting with the multimedia Notebook tutorials, and

� evaluating their own knowledge though iterative dialogue with prepared Note-

books.

Students are using the multidimensional signal processing packages and Note-

books in engineering and mathematics classes at several colleges and universities as

134

Summary

shown in Table 9.5. For example, graduate Civil Engineering students at the Pennsyl-

vania State University have been using MDSPPs since 1991 to explore topics related

to water quality. In the class, convolution arises in studying rainfall runo� in water-

sheds. Using a simple exponential response function that models absorption by the

soil, the students have been able to see the impact of an arbitrary rain event shape on

runo�. Animating this convolution has helped them visualize the principle of causal

systems, where the present runo� is a composite of past conditions.

Based on the signal processing packages, Narasingarao Sreenath at the Case

Western Reserve University has developed a symbolic controls systems analysis pack-

age (COSYPAK). Over eighty percent of COSYPAK consists of a subset of the MD-

SPPs. COSYPAK supports Notebooks that supplement the material in the text-

book [90] used by students in two graduate controls courses (see Table 9.5). He �rst

presented the extended system to the students as an optional part of the courses.

However, since few students wanted to take the time to learn a new environment, the

professor now requires the students to solve homework problems with it.

In 1989, the Georgia Institute of Technology �rst introduced Mathematica into

a graduate mathematics course teaching mathematical programming. Since then,

the School of Mathematics has used Mathematica in teaching advanced engineering

mathematics and transform theory. Beginning in the Fall of 1991, the mathemat-

ics department required students in several calculus sections to use Mathematica to

solve, verify, and document three projects per quarter. One quarter later, the School

of Electrical Engineering began using Mathematica in two introductory signals and

systems courses. In these classes, the students complete homework assignments in-

volving convolution and transforms using our signal processing extensions. Students

can work on their own computer at home or on a Macintosh, NeXT, or Sun com-

puter on campus. Students who enjoy working with computers bene�t the most. On

the other hand, those students who have to learn a new computer, networks, and

Mathematica all at once encounter much di�culty. These di�culties will decrease

135

Summary

S
c
h
o
o
l

C
o
u
r
s
e

T
it
le

U

s
e
s
E
x
t
e
n
s
io
n
s

f
o
r

C
a
se
W
es
te
rn

E
S
Y
S
3
0
4

C
o
n
tr
o
l
E
n
g
in
ee
ri
n
g
I

L
a
p
la
ce
tr
a
n
sf
o
rm
s
a
n
d
p
lo
tt
in
g

R
es
er
v
e
U
n
iv
.

E
S
Y
S
3
0
6

C
o
n
tr
o
l
E
n
g
in
ee
ri
n
g
II

A
s
a
b
o
v
e

G
eo
rg
ia

E
E
3
2
1
6

C
ir
cu
it
s,
S
ig
n
a
ls
,
a
n
d
S
y
st
em
s
I

C
o
n
v
o
lu
ti
o
n
a
n
d
F
o
u
ri
er
tr
a
n
sf
o
rm
s

In
st
it
u
te
o
f

E
E
3
2
2
1

C
ir
cu
it
s,
S
ig
n
a
ls
,
a
n
d
S
y
st
em
s
II

D
T
F
T
a
n
d
z
-t
ra
n
sf
o
rm

T
ec
h
n
o
lo
g
y

E
E
4
0
7
8

D
ig
it
a
l
S
ig
n
a
l
P
ro
ce
ss
in
g

z
-t
ra
n
sf
o
rm
s

M
A
T
H
4
5
8
1

A
d
v
a
n
ce
d
E
n
g
in
ee
ri
n
g
M
a
th
em
a
ti
cs
I

L
a
p
la
ce
tr
a
n
sf
o
rm
s

M
A
T
H
8
x
x
x

M
a
th
em
a
ti
ca
l
P
ro
g
ra
m
m
in
g

E
x
a
m
p
le
s
o
f
p
ro
g
ra
m
m
in
g

P
en
n
.
S
ta
te

C
E
5
9
7

T
ra
ce
r
a
n
d
C
o
n
ta
m
in
a
n
t
T
ra
n
sp
o
rt

C
o
n
v
o
lu
ti
o
n
a
n
d
so
lv
in
g

U
n
iv
er
si
ty

in
G
ro
u
n
d
w
a
te
r
S
y
st
em
s

L
in
ea
r
co
n
.
co
e�
.
d
i�
er
en
ti
a
l
eq
u
's

R
o
se
-H
u
lm
a
n

M
A
2
0
1

D
i�
er
en
ti
a
l
E
q
u
a
ti
o
n
s
I

L
a
p
la
ce
tr
a
n
sf
o
rm
s

In
st
it
u
te
o
f

L
in
ea
r
co
n
.
co
e�
.
d
i�
er
en
ti
a
l
eq
u
's

T
ec
h
n
o
lo
g
y

M
A
2
0
2

D
i�
er
en
ti
a
l
E
q
u
a
ti
o
n
s
II

L
in
ea
r
co
n
.
co
e�
.
d
i�
er
en
ce
eq
u
's

E
E
3
9
1

In
tr
o
.
to
C
o
m
m
u
n
ic
a
ti
o
n
S
y
st
em
s

F
o
u
ri
er
tr
a
n
sf
o
rm
s

S
ta
n
fo
rd

E
E
2
6
5

A
p
p
li
ca
ti
o
n
s
o
f
th
e
S
h
o
rt
-T
im
e

F
o
u
ri
er
tr
a
n
sf
o
rm
s

U
n
iv
er
si
ty

F
o
u
ri
er
T
ra
n
sf
o
rm

a
n
d
se
q
u
en
ce
p
lo
ts

U
n
iv
er
si
ty
o
f

E
E
1
2
1

S
y
st
em
s
I

C
o
n
v
o
lu
ti
o
n
,
L
a
p
la
ce
,
F
o
u
ri
er

th
e
P
a
ci
�
c

E
E
1
2
2

S
y
st
em
s
II

C
o
n
v
o
lu
ti
o
n
,
z
-t
ra
n
sf
o
rm

U
n
iv
.
o
f
P
en
n
.

E
E
3
1
4

S
ig
n
a
ls
a
n
d
L
in
ea
r
S
y
st
em
s

C
o
m
p
u
te
r
p
ro
je
ct
s

W
a
sh
in
g
to
n

E
E
3
2
1

E
le
ct
ri
ca
l
C
ir
cu
it
s
II

L
a
p
la
ce
tr
a
n
sf
o
rm
s

S
ta
te

E
E
3
4
1

C
o
m
m
u
n
ic
a
ti
o
n
s
S
y
st
em
s

C
o
n
v
o
lu
ti
o
n
a
n
d
F
o
u
ri
er
tr
a
n
sf
o
rm
s

U
n
iv
er
si
ty

E
E
4
6
4

D
ig
it
a
l
S
ig
n
a
l
P
ro
ce
ss
in
g

C
o
n
v
o
lu
ti
o
n
a
n
d
z
-t
ra
n
sf
o
rm
s

E
E
5
8
2

M
u
lt
ir
a
te
S
ig
n
a
l
P
ro
ce
ss
in
g

F
il
te
r
d
es
ig
n
sy
st
em

a
n
a
ly
si
s

T
a
b
le
9
.2
:
P
a
st
a
n
d
P
re
se
n
t
U
se
s
o
f
th
e
S
ig
n
a
l
P
ro
ce
ss
in
g
E
x
te
n
si
o
n
s

136

Summary

as the new breed of calculus students enter the electrical engineering program. The

Mathematica initiatives in calculus and in the signals and systems courses, as well

as the use of other computer algebra programs in electrical engineering courses, have

set the stage for further integration of Mathematica into the electrical engineering

curriculum.

137

CHAPTER 10

Conclusion

Kopec has advocated a broader view of signals as objects having their own properties

(slots) and procedures (methods). He originally implemented his ideas as the inter-

pretive Signal Representation Language (SRL) [28, 29, 30]. Descendants of SRL, as

shown in Figure 10.1, have taken one of three independent directions: simulation,

knowledge-based signal processing (KBSP), and algorithm design. Two prominent

algorithm design environments, SPLICE [7, 8, 9] and ADE [10, 11, 12], express one-

dimensional (multirate) systems as nested formulas. On the other hand, the Blosim

[33], Gabriel [34], and Ptolemy [13] simulation environments represent systems as

interconnected hierarchical block diagrams. This thesis discusses a new algorithm de-

sign environment, called the multidimensional signal processing packages (MDSPPs),

which automates the design and analysis of multidimensional multirate systems ex-

pressed as algebraic formulas and converts the algebraic representation into block

diagrams for inclusion in Ptolemy.

The algorithm design environments of SPLICE, ADE, and MetaMorph [31]

are implemented in Lisp. SPLICE and ADE are unavailable for general use because

they only run under Symbolics dialects of Lisp. Furthermore, these environments are

missing detailed mathematical knowledge of signals and systems, extensive graphics

capabilities, and the ability to translate algorithms into other environments.

This thesis describes a di�erent approach. Instead of extending Lisp, we have

started at a much higher level by using a symbolic mathematics system, Mathemat-

ica. With Mathematica, we automatically gain the ability to de�ne objects, match

patterns, and express conditional rules (see Section 2.3). Mathematica manipulates

formulas and supports a programming language. In Mathematica's programming

138

Conclusion

Signal Representation Language [30]

� ?

J
J

J
J

J
J^

Simulation KBSP Algorithm Design

Integrated Signal Proc.
System [29]

?
Interactive
Laboratory
System [32]

?

Blosim [33]

Gabriel [34]

Ptolemy [13]

The KBSP Package [7]

?

Pitch Detector's
Assistant [35]

?

Interactive Signal Proc.
Under Duress [36]

?
Integrated Proc.
and Understanding
of Signals [37]

Signal Proc. Language
and Interactive Comp.
Environment [8]

?

An Algorithm Design
Environment [10]

?

Meta System for
Morphology [20]

?
Multidimensional
Signal Proc.
Packages

-

Figure 10.1: Descendants of Kopec's Signal Representation Language

Updated version of Figure 2.2 to include the MDSPPs.
The dashed line indicates code generation.

139

Contributions

language, we have developed a set of multidimensional signal processing packages

(MDSPPs) that represent signals as functions and systems as operators (Chapter

4). Signal processing algorithms are expressed as formulas containing signals and

systems. Based on this algebraic representation, the MDSPPs can analyze, simplify,

rearrange, and optimize algorithms (Chapters 5 and 6). Once an algorithm has been

developed, it can be transported directly into a block diagram environment, either to

be simulated or inserted into a more complex design (Chapter 7).

We have written several Mathematica multimedia Notebooks to accompany the

MDSPPs so that the extensions are self-documenting. By combining features of the

Mathematica kernel with the Notebook interface, we can convert between numeric,

symbolic, and graphical representations of formulas. We utilize this combination to

automate the design of two-dimensional rational decimation systems (Chapter 8) and

to turn Mathematica into an educational tool for signal processing (Chapter 9).

10.1 Contributions

The contributions of this thesis, as shown in Table 10.1, relate to the abilities of

our MDSPPs for Mathematica. The MDSPPs have the ingredients necessary to be

simultaneously useful to designers implementing signal processing algorithms, stu-

dents learning signals and systems, and researchers developing new signal processing

theory. All three groups can bene�t from its symbolic and graphical analyses of

one-dimensional and multidimensional (multirate) systems.

Designers can use MDSPPs to help decide on values of free parameters and to

�nd better implementations of algorithms. Once an algorithm has been designed,

the MDSPPs can convert it into a working Ptolemy simulation under a synchronous

data
ow model (i.e. uniform sampling). Ptolemy can generate complete C and DSP

assembly language programs as a part of a rapid prototyping process.

Students can learn the theoretical operations underlying signal processing by

140

Contributions

Theory � Generalized Rules for Multidimensional Multirate Systems

� E�cient Algorithms to Implement the Rules

� New Smith Form Decomposition Routines

Analysis � Multidimensional Discrete-Time and Continuous-Time
Transforms

� Multidimensional Discrete-Time and Continuous-Time Sta-
bility Analysis Based on Z and Laplace Transforms

� Properties of Multidimensional Signals and Systems

� Visualization of Resampling in Two Dimensions

Algorithms � Automatic Rearrangement of Multidimensional Multirate
Systems

� Cost Functions for Multidimensional Algorithms

Prototyping � Automatic Code Generation For Algorithms

� Block Diagram Representations for Algebraic Representa-
tions of Algorithms

Design � Interactive Design of Two-Dimensional Decimation Systems

� Automatic Conversion of Graphical Speci�cations into Us-
able Design Speci�cations

Education � Textual and Graphical Justi�cation of Answers

� Exploration of Linear Systems Theory

� Student Self-Evaluation

Table 10.1: Contributions of the Thesis

141

Contributions

interacting with the MDSPPs and the accompanying electronic Notebooks. For both

digital and analog signals, the packages can animate the
ip-and-slide approach to

piecewise convolution. The multidimensional linear transforms, the di�erential and

di�erence equation solvers, and many other routines in the MDSPPs can show their

intermediate calculations in the form of natural language dialogue. The MDSPPs also

provide many of the graphical representations of one-dimensional and two-dimensional

systems such as lollipop plots for one-dimensional sequences and pole-zero root maps

for two-dimensional systems. By interacting with the tutorial Notebooks, students

can learn di�cult concepts such as convolution and the z-transform. A di�erent set

of Notebooks helps students evaluate their own knowledge of convolution and digital

�lter design. Other Notebooks form a user's guide and serve as on-line help.

Researchers can bene�t from the rich set of symbolic analyses on signal process-

ing algorithms. But by itself, Mathematica can empower researchers to develop new

algorithms. It has helped us derive number theoretic algorithms that impose di�erent

kinds of structure on Smith form decompositions of integer and rational matrices [27]

which have aided in the design of non-uniform multidimensional �lter banks [73].

Besides discussing the new environment de�ned by the MDSPPs, the thesis also

formalizes the rules governing the interaction of linear shift-invariant and periodically

time-varying systems. The thesis also identi�es e�cient algorithms to implement

these rules. In determining the commutativity of an upsampler and downsampler

in cascade, we developed two equivalent pairs of conditions, one based on the time

domain and one based on the frequency domain. After analysis of the underlying

algorithms, we determined that the conditions based on the time domain should be

used to check for commutativity because the underlying algorithms are faster.

The thesis also extends many of the one-dimensional abilities of E-SPLICE and

ADE to multiple dimensions. We have identi�ed many of the important multidimen-

sional signal and system properties for multiple dimensions. In addition, we have

developed cost functions to rank equivalent multidimensional multirate algorithms.

142

Future Research

10.2 Future Research

The MDSPPs turn a symbolic mathematics environment into a viable signal process-

ing research, design, and educational tool. The tool manipulates signals and systems

as algebraic expressions, including automatic rearrangement and simpli�cation of ex-

pressions. This ability to rearrange components of expressions is crucial in �nding

better implementations of algorithms, but many unresolved issues remain. Table 10.2

lists avenues of future research, which we will highlight next.

One open issue is to �nd the best way to constrain the space of equivalent

forms of an algorithm. Another open issue is de�ning appropriate cost functions for

multidimensional multirate systems. The current cost function measures the number

of additions, multiplications, and memory elements, but it neglects to count the

number of memory accesses and to take into account delay in communicating data

between components in an algorithm.

The environment does not stand alone but instead generates TEX code and

complete simulations for Ptolemy. Now that Ptolemy supports multidimensional

scheduling, it should be possible to generate working Ptolemy simulations for multi-

dimensional multirate structures such as non-uniform multidimensional �lter banks.

It should also be possible to read a Ptolemy description into Mathematica, especially

one that was originally generated by the MDSPPs. This ability would allow feedback

of lessons learned while simulating the algorithm to an earlier stage in the prototyping

process. Future work may extend the MDSPPs to convert algebraic expressions to

other target environments such as Matlab and the Signal Processing WorkSystemTM

[93]. Furthermore, the MDSPPs could be ported to other computer algebra platforms

such as Maple to make the MDSPPs even more widely available.

Please direct any electronic correspondence concerning this research to Brian

Evans at evans@eedsp.gatech.edu. At the time of writing, a freely distributable

version of the multidimensional signal processing packages and Notebooks is available

via anonymous FTP to gauss.eedsp.gatech.edu (IP #130.207.226.24).

143

Future Research

Theory � E�ect of Di�erent Smith Forms on Algorithms

Analysis � True Multidimensional Transforms

� Inequality Reasoning To Support Stability Analysis

� Visualization of Resampling in Three Dimensions

Algorithms � Better Heuristics To Rearrange Algorithms

� Better Cost Functions

Prototyping � Feedback From Ptolemy After Code Generation

Design � Interactive Decimator Design in Three Dimensions

Education � Methods for Student Self-Evaluation On More Topics

� Automated Evaluation of a Student's Abilities

Table 10.2: Future Research

144

APPENDIX A

Ptolemy Simulation Code

This appendix lists the Ptolemy source code generated for the non-uniform two-

channel �lter bank shown in Figure 7.2 by the PtolemyProgram command in the

MDSPPs. The generated source code has the following structure: header, constants,

variables, the algorithm(s), and simulation directives. In this example, the source

code has been generated for Version 0.3.1 of Ptolemy. This version of the Ptolemy

interpreter uses a Lisp-like syntax. The number sign # represents a comment.

A.1 Code Generation for the Two-Channel Non-

Uniform Filter Bank

This is the code generated by the MDSPPs for the two-channel non-uniform �lter

bank.

(load "~/mathematica/SignalProcessing/ObjectOriented/header.pt")

#

Constants

#

#

Variables

#

(star n FloatRamp)

(setstate n value "1")

(node n)

145

Code Generation for the Two-Channel Non-Uniform Filter Bank

(nodeconnect (n output) n)

#

Algorithm

#

1/3

(state rationalconst1 float "0.3333333333333333")

(2*Pi)/3

(state timesconst1 float "2.094395102393195")

Pi/6

(state timesconst2 float "0.5235987755982988")

(star timesbyconstant1 FloatGain)

(setstate timesbyconstant1 gain "timesconst1")

(node timesbyconstant1)

(nodeconnect (timesbyconstant1 output) timesbyconstant1)

(nodeconnect (timesbyconstant1 input) n)

(star cos1 Cos)

(node cos1)

(nodeconnect (cos1 output) cos1)

(nodeconnect (cos1 input) timesbyconstant1)

(star timesbyconstant2 FloatGain)

(setstate timesbyconstant2 gain "timesconst2")

(node timesbyconstant2)

(nodeconnect (timesbyconstant2 output) timesbyconstant2)

(nodeconnect (timesbyconstant2 input) n)

(star sinc1 Sinc)

(node sinc1)

(nodeconnect (sinc1 output) sinc1)

(nodeconnect (sinc1 input) timesbyconstant2)

146

Code Generation for the Two-Channel Non-Uniform Filter Bank

(star times1 FloatProduct)

(node times1)

(nodeconnect (times1 output) times1)

(numports times1 input 2)

(nodeconnect (times1 "input#1") cos1)

(nodeconnect (times1 "input#2") sinc1)

(star timesbyconstant3 FloatGain)

(setstate timesbyconstant3 gain "rationalconst1")

(node timesbyconstant3)

(nodeconnect (timesbyconstant3 output) timesbyconstant3)

(nodeconnect (timesbyconstant3 input) times1)

(star upsample1 UpSample)

(setstate upsample1 factor 2)

(node upsample1)

(nodeconnect (upsample1 output) upsample1)

(nodeconnect (upsample1 input) timesbyconstant3)

(star fir1 FIR)

(setstate fir1 taps "<ptolemy/h0")

(node fir1)

(nodeconnect (fir1 signalOut) fir1)

(nodeconnect (fir1 signalIn) upsample1)

(star downsample1 DownSample)

(setstate downsample1 factor 3)

(node downsample1)

(nodeconnect (downsample1 output) downsample1)

(nodeconnect (downsample1 input) fir1)

(star upsample2 UpSample)

(setstate upsample2 factor 3)

(node upsample2)

(nodeconnect (upsample2 output) upsample2)

(nodeconnect (upsample2 input) downsample1)

147

Code Generation for the Two-Channel Non-Uniform Filter Bank

(star fir2 FIR)

(setstate fir2 taps "<ptolemy/g0")

(node fir2)

(nodeconnect (fir2 signalOut) fir2)

(nodeconnect (fir2 signalIn) upsample2)

(star downsample2 DownSample)

(setstate downsample2 factor 2)

(node downsample2)

(nodeconnect (downsample2 output) downsample2)

(nodeconnect (downsample2 input) fir2)

(star fir3 FIR)

(setstate fir3 taps "<ptolemy/h1")

(node fir3)

(nodeconnect (fir3 signalOut) fir3)

(nodeconnect (fir3 signalIn) timesbyconstant3)

(star downsample3 DownSample)

(setstate downsample3 factor 3)

(node downsample3)

(nodeconnect (downsample3 output) downsample3)

(nodeconnect (downsample3 input) fir3)

(star upsample3 UpSample)

(setstate upsample3 factor 3)

(node upsample3)

(nodeconnect (upsample3 output) upsample3)

(nodeconnect (upsample3 input) downsample3)

(star fir4 FIR)

(setstate fir4 taps "<ptolemy/g1")

(node fir4)

(nodeconnect (fir4 signalOut) fir4)

(nodeconnect (fir4 signalIn) upsample3)

148

Code Generation for a More E�cient Form of the Filter Bank

(star plus1 FloatSum)

(node plus1)

(nodeconnect (plus1 output) plus1)

(numports plus1 input 2)

(nodeconnect (plus1 "input#1") downsample2)

(nodeconnect (plus1 "input#2") fir4)

#

Run Simulation

#

(star xygraph1 XYgraph)

(nodeconnect (xygraph1 xInput) n)

(nodeconnect (xygraph1 input) plus1)

(run 100)

(wrapup)

A.2 Code Generation for a More E�cient Form

of the Filter Bank

This is the code generated after the MDSPPs rearrange the two-channel non-uniform

�lter bank to �nd the polyphase implementation for each analysis and synthesis

branch.

(load "~/mathematica/SignalProcessing/ObjectOriented/header.pt")

#

Constants

#

149

Code Generation for a More E�cient Form of the Filter Bank

#

Variables

#

(star n FloatRamp)

(setstate n value "1")

(node n)

(nodeconnect (n output) n)

#

Algorithm

#

1/3

(state rationalconst1 float "0.3333333333333333")

(2*Pi)/3

(state timesconst1 float "2.094395102393195")

Pi/6

(state timesconst2 float "0.5235987755982988")

(star timesbyconstant1 FloatGain)

(setstate timesbyconstant1 gain "timesconst1")

(node timesbyconstant1)

(nodeconnect (timesbyconstant1 output) timesbyconstant1)

(nodeconnect (timesbyconstant1 input) n)

(star cos1 Cos)

(node cos1)

(nodeconnect (cos1 output) cos1)

(nodeconnect (cos1 input) timesbyconstant1)

(star timesbyconstant2 FloatGain)

(setstate timesbyconstant2 gain "timesconst2")

(node timesbyconstant2)

(nodeconnect (timesbyconstant2 output) timesbyconstant2)

(nodeconnect (timesbyconstant2 input) n)

150

Code Generation for a More E�cient Form of the Filter Bank

(star sinc1 Sinc)

(node sinc1)

(nodeconnect (sinc1 output) sinc1)

(nodeconnect (sinc1 input) timesbyconstant2)

(star times1 FloatProduct)

(node times1)

(nodeconnect (times1 output) times1)

(numports times1 input 2)

(nodeconnect (times1 "input#1") cos1)

(nodeconnect (times1 "input#2") sinc1)

(star timesbyconstant3 FloatGain)

(setstate timesbyconstant3 gain "rationalconst1")

(node timesbyconstant3)

(nodeconnect (timesbyconstant3 output) timesbyconstant3)

(nodeconnect (timesbyconstant3 input) times1)

(star polyphaseresample1 FIR)

(setstate polyphaseresample1 interpolation 3)

(setstate polyphaseresample1 taps ""<ptolemy/h0"")

(setstate polyphaseresample1 decimation 2)

(node polyphaseresample1)

(nodeconnect (polyphaseresample1 output) polyphaseresample1)

(nodeconnect (polyphaseresample1 input) timesbyconstant3)

(star polyphaseresample2 FIR)

(setstate polyphaseresample2 interpolation 2)

(setstate polyphaseresample2 taps ""<ptolemy/g0"")

(setstate polyphaseresample2 decimation 3)

(node polyphaseresample2)

(nodeconnect (polyphaseresample2 output) polyphaseresample2)

(nodeconnect (polyphaseresample2 input) polyphaseresample1)

(star polyphasedownsample1 FIR)

(setstate polyphasedownsample1 decimation 2)

151

Code Generation for a More E�cient Form of the Filter Bank

(setstate polyphasedownsample1 taps ""<ptolemy/h1"")

(node polyphasedownsample1)

(nodeconnect (polyphasedownsample1 output) polyphasedownsample1)

(nodeconnect (polyphasedownsample1 input) timesbyconstant3)

(star polyphaseupsample1 FIR)

(setstate polyphaseupsample1 decimation 3)

(setstate polyphaseupsample1 taps ""<ptolemy/g1"")

(node polyphaseupsample1)

(nodeconnect (polyphaseupsample1 output) polyphaseupsample1)

(nodeconnect (polyphaseupsample1 input) polyphasedownsample1)

(star plus1 FloatSum)

(node plus1)

(nodeconnect (plus1 output) plus1)

(numports plus1 input 2)

(nodeconnect (plus1 "input#1") polyphaseresample2)

(nodeconnect (plus1 "input#2") polyphaseupsample1)

#

Run Simulation

#

(star xygraph1 XYgraph)

(nodeconnect (xygraph1 xInput) n)

(nodeconnect (xygraph1 input) plus1)

(run 100)

(wrapup)

152

APPENDIX B

Glossary

ADE Algorithm Design Environment by Covell which is a Meta-Systemy for one-
dimensional multirate signal processing algorithms

CAD Computer-Aided Design

Conditional rule an if: : : then rule with a condition and a consequence, e.g. if

a < b and b < c then a < c

DFT Discrete Fourier Transform (discrete-time to discrete-frequency transform)

DSP Digital Signal Processing

DTFT Discrete-Time Fourier Transform (discrete-time to continuous-frequency

transform)

Equivalence space the collection of all expressions equivalent to a certain expres-

sion; the space can often be arranged in tree structure in which each child node

is di�erent from its parent by one rearrangementy rule

E-SPLICE Extended SPLICEy

FIR Finite Impulse Response (�lter)

FPD Fundamental Parallelepiped

Fundamental frequency tile since the discrete-time frequency domain is peri-

odic with period 2� in each of the discrete-time frequency variables, one legiti-

mate choice of the fundamental frequency tile is !i 2 [��; �) in each discrete-

time frequency variable !i

153

Glossary

IIR In�nite Impulse Response (�lter)

ILS Interactive Laboratory System

IPUS Integrated Processing and Understanding of Signals

ISP Integrated Signal Processing System

ISPUD Interactive Signal Processing Under Duress developed for the design and

analysis of multi-microphone hearing aids (actually, \Under Duress" is an arti-

�cial appendage to make the acronym pronounceable)

KBSP Knowledge-Based Signal Processing. The KBSP Package was a software

tool written by W. Dove, C. Myers, and E. Milios at MIT.

Linear A system h is linear if for any constants a and b, hfax(t) + b y(t)g =

ahfx(t)g + b hfy(t)g. Equivalently, a system h is linear if for any constant c,

hfc x(t)g = c x(t) and hfx(t) + y(t)g = hfx(t)g+ hfy(t)g.

LPTV Lineary Periodically Time-Varyingy describes a periodic system that is

time-varying over each period

LSI Lineary Shift-Invarianty

LTV Lineary Time-Varyingy

MDSPPs Multidimensional Signal Processing Packages for Mathematica

MetaMorph Meta-Systemy for morphological signals (sets) and systems (set op-

erations), i.e. a class of non-linear systems

Meta-Systems Symbolic reasoning systems, i.e. symbolic analysis and manipula-

tion of elements in a domain of knowledge

PDA Pitch Detector's Assistant

154

Glossary

Ptolemy Algorithm simulation tool which can generate source and VHDLy code
for algorithms

Quincunx A quincunx resampling matrix is a family of resampling matrices with

determinant of 2 or �2 and entries that are �1. The lattice (sampling grid) gen-

erated by these matrices correspond to diagonal interleaving commonly found

in video signals.

Rearrangement rule a conditionaly rule that rewrites a set of algebraic opera-

tions by rearranging the order of operations or by replacing the operations with

an equivalent set of operations, e.g. switching the order of FIR and IIR �ltering.

Regular unimodular A unimodular matrix has a determinant of �1 or 1. Re-

sampling a discrete-time signal by a regular unimodular integer matrix only

shu�es the signal| no samples are deleted or inserted.

Resampling matrix a square non-singular integer matrix

Rewrite rule a rearrangementy or simpli�cationy rule

ROC The Region of Convergence of either the z or Laplace transform of a signal.

It represents the range of complex values of the transform variable(s) for which

the transform is valid.

Rule Base A collection of related conditionaly rules

Shift-Invariant A system is shift-invariant if letting hfx(t)g = y(t), hfx(t� t0)g =
y(t� t0) for all t0.

Simpli�cation rule a conditionaly rule that removes redundant operations in an

expression, e.g. modulating then demodulating by using the same modulation

function or upsampling then downsampling by the same resampling matrix.

155

Glossary

Smith form The Smith form of an m � n non-singular integer matrix is U�V

where the m � m U integer matrix and the n � n V integer matrix are reg-

ular unimodulary and the m � n � matrix is diagonal. It is the analog to

singular value decomposition (SVD) over the semigroup of integer matrices.

Like SVD, the Smith form decomposition makes multivariate operations (like

up/downsampling) separable.

Smith-McMillan form The Smith-McMillan form is the extension of the Smith

formy to non-singular rational matrices. The only di�erence is that � is a

rational diagonal matrix.

SPLICE Signal Processing Language and Interactive Computing Environment, a

forerunner of ADEy

SRL Signal Representation Language

Time-Varying not Shift-Invarianty

Unimodular A unimodular matrix has a determinant of �1, 0, or 1.

VHDL VLSIy Hardware Descriptive Language which allows the reuse of VLSIy
designs for di�erent VLSIy technologies

VLSI Very Large Scale Integration of microelectronic circuits

156

Bibliography

[1] B. L. Evans, J. H. McClellan, and W. B. McClure, \Symbolic z-transforms using

DSP knowledge bases," in Proc. IEEE Int. Conf. Acoust., Speech, and Signal

Processing, (Albuquerque, NM), pp. 1775{1778, Apr. 1990.

[2] B. L. Evans, J. H. McClellan, and W. B. McClure, \Symbolic transforms with ap-

plications to signal processing," The Mathematica Journal, vol. 1, no. 2, pp. 70{

80, Fall, 1990.

[3] B. L. Evans and J. H. McClellan, \Symbolic analysis of signals and systems," in

Symbolic and Knowledge-Based Signal Processing (A. Oppenheim and H. Nawab,

eds.), pp. 88{141, Englewood Cli�s, NJ: Prentice-Hall, 1992.

[4] S. Wolfram,Mathematica: A System for Doing Mathematics by Computer. Red-

wood City, CA: Addison-Wesley, second ed., 1991.

[5] A. V. Oppenheim and A. Willsky, Signals and Systems. Englewood Cli�s, NJ:

Prentice-Hall, 1983.

[6] A. Guessoum, Fast Algorithms for the Multidimensional Discrete Fourier Trans-

form. PhD thesis, Georgia Institute of Technology, Atlanta, GA, June 1984.

[7] W. Dove, C. Myers, and E. Milios, \An object-oriented signal processing en-

vironment: The Knowledge-Based Signal Processing Package," Tech. Rep. 502,

MIT Research Laboratory for Electronics, Cambridge, MA, 1984.

157

BIBLIOGRAPHY

[8] C. S. Myers, Signal Representation for Symbolic and Numeric Processing. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA, Aug. 1986. Re-

search Laboratory for Electronics Tech. Rep. 521.

[9] C. Myers, \Symbolic representation and manipulation of signals," in Proc. IEEE

Int. Conf. Acoust., Speech, and Signal Processing, (Dallas, TX), pp. 2400{2403,

Apr. 1987.

[10] M. M. Covell, An Algorithm Design Environment for Signal Processing. PhD the-

sis, Massachusetts Institute of Technology, Cambridge, MA, Dec. 1989. Research

Laboratory for Electronics Tech. Rep. 549.

[11] M. M. Covell, \An algorithm design environment for signal processing," Proc.

IEEE Int. Conf. Acoust., Speech, and Signal Processing, pp. 1779{1782, Apr.

1990.

[12] M. M. Covell and J. Richardson, \A new, e�cient structure for the short-time

Fourier transform with an application in code-division sonar imaging," Proc.

IEEE Int. Conf. Acoust., Speech, and Signal Processing, pp. 2041{2044, May

1991.

[13] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, \Ptolemy: A platform

for heterogeneous simulation and prototyping," in Proc. of the 1991 European

Simulation Conf., (Copenhagen, Denmark), July 1991.

[14] J. Buck, S. Ha, E. Lee, and D. Messerschmitt, \Multirate signal processing

in Ptolemy," in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing,

(Toronto, Canada), pp. 1245{1248, Mar. 1991.

[15] J. Buck, E. Goei, S. Ha, I. Kuroda, P. Lapsley, E. Lee, and D. Messerschmitt,

\The Almagest: Manual for Ptolemy," Tech. Rep. for Ptolemy 0.3.1, The Uni-

versity of California at Berkeley, Berkeley, CA, 1991.

158

BIBLIOGRAPHY

[16] E. A. Lee, \Representing and exploiting data parallelism using multidimensional

data
ow diagrams," in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Pro-

cessing, vol. I, (Minneapolis, MN), pp. 453{456, Apr. 1993.

[17] W. Dove and C. Myers, \Rapid prototyping of application speci�c signal proces-

sors," Tech. Rep. 1{2300, Lockheed Sanders Inc., 95 Canal Street, Nashua, NH,

1992. Sponsored by DARPA Contact MDA972-92-C-0058.

[18] C. H. Richardson and R. W. Schafer, \Symbolic manipulation and analysis of

morphological algorithms," in Proc. IEEE Int. Conf. Acoust., Speech, and Signal

Processing, (Albuquerque, NM), pp. 2173{2176, Apr. 1990.

[19] C. H. Richardson and R. W. Schafer, \An environment for the automatic ma-

nipulation and analysis of morphological algorithms," in Proc. of SPIE, Image

Algebra, and Morphological Image Processing, (Albuquerque, NM), pp. 262{273,

July 1990.

[20] C. H. Richardson, The Symbolic Representation, Analysis, and Manipulation of

Morphological Algorithms. PhD thesis, Georgia Institute of Technology, Atlanta,

GA, Dec. 1991.

[21] C. H. Richardson and R. W. Schafer, \The representation of morphological sys-

tems and meta-systems for automatic symbolic manipulations," in Proc. IEEE

Int. Conf. Acoust., Speech, and Signal Processing, (Minneapolis, MN), Apr. 1993.

[22] M. Slaney, \Interactive signal processing documents," IEEE ASSP Magazine,

vol. 7, pp. 8{20, Apr. 1990.

[23] B. L. Evans, J. H. McClellan, and K. A. West, \Mathematica as an educational

tool for signal processing," in Proc. IEEE Southeastern Conf., (Williamsburg,

VA), pp. 1175{1179, Apr. 1991.

159

BIBLIOGRAPHY

[24] B. L. Evans, L. J. Karam, K. A. West, and J. H. McClellan, \Learning signals

and systems with Mathematica," IEEE Trans. on Education, vol. 36, pp. 72{78,

Feb. 1993.

[25] B. L. Evans, J. H. McClellan, and H. J. Trussell, \Investigating signal processing

theory with Mathematica," in Proc. IEEE Int. Conf. Acoust., Speech, and Signal

Processing, vol. I, (Minneapolis, MN), pp. 12{15, Apr. 1993.

[26] K. A. West and J. H. McClellan, \Symbolic convolution," IEEE Trans. on Ed-

ucation, 1993. To Be Published.

[27] B. L. Evans, T. R. Gardos, and J. H. McClellan, \Imposing structure on Smith

form decompositions of rational resampling matrices," IEEE Trans. on Signal

Processing, vol. ASSP-42, Apr. 1994.

[28] G. Kopec, The Representation of Discrete-Time Signals and Systems in Pro-

grams. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,

1980.

[29] G. Kopec, \The Integrated Signal Processing System ISP," IEEE Trans. on

Acoustics, Speech, and Signal Processing, vol. ASSP-32, Aug. 1984.

[30] G. Kopec, \The Signal Representation Language SRL," IEEE Trans. on Acous-

tics, Speech, and Signal Processing, vol. ASSP-33, pp. 921{932, Aug. 1985.

[31] A. V. Oppenheim and S. H. Nawab, eds., Symbolic and Knowledge-Based Signal

Processing. Englewood Cli�s, NJ: Prentice-Hall, 1992.

[32] The Interactive Laboratory System (ILS). Signal Technology Inc., Goleta, CA,

1989.

[33] D. Hait, \The BLOSIM simulation program," Master's thesis, The University of

California at Berkeley, Berkeley, CA, Nov. 1985.

160

BIBLIOGRAPHY

[34] E. A. Lee, W. H. Ho, E. Goei, J. Bier, and S. Bhattacharyya, \Gabriel: A design

environment for DSP," IEEE Trans. on Acoustics, Speech, and Signal Processing,

vol. ASSP-37, pp. 1751{1762, Nov. 1989.

[35] W. Dove, \Knowledge-based pitch detection," Tech. Rep. 518, MIT Research

Laboratory for Electronics, Cambridge, MA, June 1986.

[36] P. Peterson and J. Frisbie, \Interactive environment for signal processing on a

VAX computer," in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Process-

ing, (Dallas, TX), pp. 1891{1893, Apr. 1987.

[37] H. Nawab and V. Lesser, \Integrated processing and understanding of signals," in

Symbolic and Knowledge-Based Signal Processing (A. Oppenheim and H. Nawab,

eds.), pp. 251{285, Englewood Cli�s, NJ: Prentice-Hall, 1992.

[38] H. Abelson and G. Sussman, Structure and Interpretation of Computer Programs.

Cambridge, MA: MIT Press, 1985.

[39] T. Kailath, Linear Systems. Englewood Cli�s, New Jersey: Prentice-Hall, Inc.,

1980.

[40] N!Power. Signal Technology Inc., Goleta, CA, 1990.

[41] M. M. Covell. Personal Correspondence, May 1993.

[42] B. Char and et al., Maple Reference Manual. Waterloo, Canada: WATCOM

Publications, 1988.

[43] R. J. Fateman, \A review of MACSYMA," IEEE Trans. on Knowledge and Data

Eng., vol. 1, pp. 133{145, Mar. 1989.

[44] J. Nielsen, HyperText & HyperMedia. San Diego, CA: Academic Press, Inc.,

1990.

161

BIBLIOGRAPHY

[45] R. E. Maeder, Programming in Mathematica. Redwood City, CA: Addison-

Wesley, 2 ed., 1991.

[46] N. Blachman, Mathematica: A Practical Approach. Englewood Cli�s, NJ:

Prentice-Hall, 1992.

[47] R. E. Maeder, Programming in Mathematica. Redwood City, CA: Addison-

Wesley, 1989.

[48] P. Winston and B. Horn, eds., LISP. Reading, MA: Addison-Wesley, 3 ed., 1989.

[49] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing. Engle-

wood Cli�s, NJ: Prentice-Hall, 1983.

[50] P. P. Vaidyanathan, \Multirate digital �lters, �lter banks, polyphase networks,

and applications: A tutorial," Proc. of the IEEE, vol. 78, pp. 56{93, Jan. 1990.

[51] T. Chen and P. P. Vaidyanathan, \Commutativity of D-dimensional decima-

tion and expansion matrices, and applications to rational decimation systems,"

in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, vol. 4, (San

Francisco, CA), pp. 637{640, Mar. 1992.

[52] T. Chen and P. P. Vaidyanathan, \The role of integer matrices in multidimen-

sional multirate systems," IEEE Trans. on Signal Processing, vol. ASSP-41,

pp. 1035{1047, Mar. 1993.

[53] D. E. Dudgeon and R. M. Mersereau,Multidimensional Digital Signal Processing.

Englewood Cli�s, NJ: Prentice-Hall, 1984.

[54] D. Petersen and D. Middleton, \Sampling and reconstruction of wave-number

limited functions in N -dimensional Euclidean spaces," Information and Control,

vol. 5, pp. 279{323, 1962.

162

BIBLIOGRAPHY

[55] E. Dubois, \The sampling and reconstruction of time-varying imagery with ap-

plication in video systems," Proc. of the IEEE, vol. 73, pp. 502{522, Apr. 1985.

[56] R. H. Bamberger, The Directional Filter Bank: A Multirate Filter Bank for the

Directional Decomposition of Images. PhD thesis, Georgia Institute of Technol-

ogy, Atlanta, GA, Dec. 1990.

[57] J. Cassels, An Introduction to the Geometry of Numbers. Berlin, Germany:

Springer-Verlag, 1959.

[58] G. D. Forney, \Coset codes | Part I: Introduction and geometrical classi�ca-

tion," IEEE Transactions on Information Theory, vol. 34, pp. 1123{1151, Sept.

1988.

[59] E. Viscito and J. Allebach, \Design of perfect reconstruction multidimensional

�lter banks using cascaded Smith form matrices," in Proc. IEEE Int. Sym. Cir-

cuits and Systems, (Espoo, Finland), pp. 831{834, June 1988.

[60] A. Kaufmann and A. Henry-Labord�ere, Integer and Mixed Programming: Theory

and Applications. New York: Academic Press, 1977.

[61] P. P. Vaidyanathan, \The role of Smith-Form decomposition of integer matri-

ces in multidimensional multirate systems," in Proc. IEEE Int. Conf. Acoust.,

Speech, and Signal Processing, (Toronto, Canada), pp. 1777{1780, May 1991.

[62] C. Iliopoulos, \Worst-case complexity bounds on algorithms for computing the

canonical structure of �nite Abelian groups and the Hermite and Smith normal

forms," SIAM Journal on Computing, vol. 18, pp. 658{669, 1989.

[63] C. C. MacDu�ee, The Theory of Matrices. Berlin, Germany: Springer-Verlag,

1933.

163

BIBLIOGRAPHY

[64] P. P. Vaidyanathan, \Quadrature mirror �lter banks, M -band extensions and

perfect reconstruction techniques," IEEE ASSP Magazine, vol. 4, pp. 4{20, July

1987.

[65] M. Vetterli, \A theory of multirate �lter banks," IEEE Trans. on Acoustics,

Speech, and Signal Processing, vol. ASSP-35, pp. 356{372, Mar. 1987.

[66] K. Nayebi, A Time Domain Framework for the Analysis and Design of FIR

Multirate Filter Bank Systems. PhD thesis, Georgia Institute of Technology,

Atlanta, GA, Dec. 1990.

[67] E. Viscito and J. Allebach, \The analysis and design of multidimensional FIR

perfect reconstruction �lter banks for arbitrary sampling lattices," IEEE Trans.

on Circuits and Systems, vol. CAS-38, pp. 29{41, Jan. 1991.

[68] T. R. Gardos. Personal Correspondence, Feb. 1992.

[69] G. Havas, \Coset enumeration strategies," in Proc. Int. Sym. on Symbolic and

Algebraic Computation, (Bonn, Germany), pp. 191{199, July 1991.

[70] J. Kovacevic and M. Vetterli, \The commutativity of up/downsampling in two

dimensions," Tech. Rep. 186-90-16, Center for Telecommunications Research at

Columbia University, New York, NY, 1990.

[71] B. L. Evans, J. H. McClellan, and R. H. Bamberger, \A symbolic algebra for

linear multidimensional multirate systems," in Proc. Conf. on Inf. Sciences and

Systems, (Princeton, NJ), pp. 387{393, Mar. 1992.

[72] B. L. Evans and J. H. McClellan, \Rules for multidimensional multirate struc-

tures," IEEE Trans. on Signal Processing, vol. ASSP-42, Apr. 1994.

[73] T. R. Gardos, K. Nayebi, and R. M. Mersereau, \Analysis and design of multi-

dimensional, non-uniform band �lter banks," in SPIE Proc. Visual Communica-

tions and Image Processing, pp. 49{60, Nov. 1992.

164

BIBLIOGRAPHY

[74] R. N. Bracewell, The Fourier Transform and Its Applications. New York:

McGraw-Hill, second ed., 1986.

[75] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Engle-

wood Cli�s, NJ: Prentice-Hall, 1989.

[76] Z. Zuhao, \The square matrix rule of the convolution integral," IEEE Trans. on

Education, pp. 369{372, Nov. 1990.

[77] M. M. Covell, C. S. Myers, and A. V. Oppenheim, \Computer-aided algorithm

design and rearrangement," in Symbolic and Knowledge-Based Signal Processing

(A. Oppenheim and H. Nawab, eds.), Englewood Cli�s, NJ: Prentice-Hall, 1992.

[78] D. E. Knuth, The TeXbook. Reading, MA: Addison-Wesley, 1984.

[79] E. Kant, F. Daube, W. MacGregor, and J. Wald, \Automated synthesis of �nite

di�erence programs," in Symbolic Computations and Their Impact on Mechanics,

vol. 205, (Dallas, TX), pp. 45{61, 1990. Presented at the Winter Annual Meeting

of the American Society of Mechanical Engineers.

[80] E. Kant, F. Daube, W. MacGregor, J. Wald, E. Houstis, J. Rice, and R. Vich-

nevetsky, \Knowledge-based program generation for mathematical modeling,"

in Proc. of the Second IMACS International Conference on Expert Systems for

Numerical Computing, (West Lafayette, IN), pp. 371{92, Apr. 1992.

[81] E. Kant, \Synthesis of mathematical-modeling software," IEEE Software, vol. 10,

pp. 30{41, May 1993.

[82] K. Nayebi, T. Barnwell, and M. J. T. Smith, \Nonuniform �lter banks: A recon-

struction and design theory," IEEE Trans. on Signal Processing, vol. ASSP-41,

pp. 1114{1127, Mar. 1993.

165

BIBLIOGRAPHY

[83] T. Chen and P. P. Vaidyanathan, \On the choice of rational decimation systems

for multidimensional signals," in Proc. IEEE Int. Conf. Acoust., Speech, and

Signal Processing, vol. V, (Minneapolis, MN), pp. 527{530, Apr. 1993.

[84] T. R. Gardos, Analysis and Design of Multidimensional FIR Filter Banks. PhD

thesis, Georgia Institute of Technology, Atlanta, GA, June 1993.

[85] M. Yoder, \The use of symbolic algebra in electrical engineering," Computers in

Education Division of ASEE, vol. 1, pp. 56{60, 1991.

[86] J. Vlach, \Network theory and CAD," IEEE Trans. on Education, vol. 36,

pp. 23{27, Feb. 1993.

[87] A. Riddle, \A nodal circuit analysis program," The Mathematica Journal, vol. 1,

pp. 62{68, Summer 1990.

[88] J. Vlach and K. Singhal, eds., Computer Methods for Circuit Analysis and De-

sign. New York: Van Nostrand Reinhold, 1983.

[89] J. Vlach and K. Singhal, eds., Selected Papers on Computer-Aided Design of

Analog Networks. New York: IEEE Press, 1987.

[90] K. Ogata, Modern Control Engineering. Englewood Cli�s, NJ: Prentice-Hall,

second ed., 1991.

[91] T. W. Parks and C. S. Burrus, Digital Filter Design. New York: John Wiley and

Sons, 1987.

[92] D. Brown, H. Porta, and J. Uhl, \Calculus and Mathematica: Courseware for

the nineties," The Mathematica Journal, vol. 1, pp. 43{50, Summer 1990.

[93] Signal Processing WorkSystem. Comdisco Systems, Inc., Foster City, CA.

166

Vita

Brian \Ignatius" Lawrence Evans was born in Cincinnati, Ohio, on Mother's Day,

May 10, 1965. He does not remember why he went to the Rose-Hulman Institute of

Technology, an all-male college whose name sounds like an all-girls school. Nonethe-

less, he enjoyed the challenge of �nishing an Electrical Engineering and a Computer

Science double major there in May of 1987. He even completed an applied mathe-

matics minor but fell two classes short of a literature minor.

He entered Georgia Tech's graduate program in the Fall of 1987. Being judged

unworthy of department support, he found funding through the Georgia Tech Re-

search Institute (GTRI). At GTRI, he developed knowledge bases for an expert system

and wrote pattern recognition software, all in the name of optimizing the processing

of poultry (chickens, that is). In December of 1988, he screeched across the stage

in high-top tennis shoes to receive his M.S.E.E. degree. Upon the sudden departure

of his co-advisor Dr. Schwartz, his �nancial support dried up in June of 1989. For

the two quarters that followed, he wrote Fortran programs to help GTRI scientists

analyze indoor air quality. After working for a quarter in medical expert systems, Dr.

James McClellan gave him an o�er he could not refuse| �nancial security until he

graduated.

This thesis marks the end of his long trek through graduate school. His current

research interests include developing computing environments for designing signal

processing algorithms and exploring signal processing theory. He is a member of the

Signal Processing, Circuits and Systems, and Computer Societies of the IEEE.

167

A Knowledge-Based Environment
for the Design and Analysis of
Multidimensional Multirate
Signal Processing Algorithms

Brian Lawrence Evans

167 pages

Directed by Dr. James H. McClellan

This thesis discusses the design and analysis by computer of algorithms composed of

linear periodically time-varying (LPTV) multidimensional systems. Analysis of linear

systems is based on linear transforms (e.g. z and Laplace transforms). Algorithm

design rewrites component systems to reduce the implementation cost.

To support algorithm design for multidimensional systems, the thesis derives

the rules for rewriting the interconnections of discrete-time LPTV multidimensional

systems, a.k.a. multidimensional multirate systems, as well as develops metrics to

measure implementation costs. We encode the rewrite rules, number theoretic al-

gorithms underlying the rules, and cost metrics in a set of multidimensional signal

processing packages (MDSPPs) for the computer algebra program Mathematica.

For algorithm analysis, the MDSPPs implement the multidimensional multi-

sided forms of the commonly used linear transforms, and the transforms can justify

their answers with natural language. Using the transforms, the MDSPPs can deduce

ranges on free parameters to guarantee stability and generate input-output relation-

ships. Engineers can use the MDSPPs to visualize signals in transform domains.

The MDSPPs represent signals as functions and systems as operators. In such

an algebraic framework, the many interconnections in complex systems cannot be

captured. The MDSPPs can, however, convert an algorithm for layout in the Ptolemy

block diagram environment, which �ts the MDSPPs into a rapid prototyping process.

