Algorithm for symbolic design of elliptic filters
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Abstract— A new algorithm for symbolic design of analog
and digital IIR elliptic (Cauer) filters is presented. The al-
gorithm is based on the nesting feature of elliptic functions.
The advantages of the proposed algorithm are illustrated by
several examples.

I. INTRODUCTION

A classical elliptic filter design algorithm relies on nu-
merically oriented procedures. Many simple approximate
algorithms exist for those numerical design algorithms [1]
- [4]. In general, these numerical design procedures lead
to only one solution, which is often far from the optimum
for the given constrains or design goals. Even exhaustive
and repetitive numerical calculations can fail in finding the
best solution.

This paper presents a symbolic algorithm implemented
in a computer algebra system to design and synthesis ellip-
tic filters, including the Chebyshev and Butterworth types
as special cases. Symbolic design make it possible to elimi-
nate redundant variables, to decrease the order of the func-
tions, and to simplify or approximate the complex relations
prior to the final numerical calculations. Closed-form ex-
pressions are preferred and maintained in symbolic form
up to the point where numerical evaluation is ultimately
necessary. The benefits of this approach are clarified by
several examples. The original algorithm has been devel-
oped in Mathematica [5].

II. GENERAL ALGORITHM FOR ELLIPTIC FILTER
SYMBOLIC DESIGN

Without lack of generality let us consider a low-pass filter
design. The filter specification of another type (high-pass,
bandpass, bandreject) is transformed into the equivalent
low-pass prototype that meets the specification

S ={Fp, Fs,Ap, As} (1)

where F,, Fs, Ap and A, are the pass-band edge frequency,
the stop-band edge frequency, the maximum pass-band at-
tenuation and the minimum stop-band attenuation in dB,
respectively.

The first step, i.e. approximation, is to generate a char-
acteristic function K (f) that satisfies the desired specifica-
tion S. The attenuation, A, can be expressed in terms of
K(f)

A(f) = 10log (1 + K*(f)) (2)
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Fig. 1 Filter specification S. and an elliptic characteristic

function K (f).

There is an infinite number of characteristic functions
that fit S. In order to find the better relation between S
and K (f), we will consider the mapped specification S,

Se = {vaFs: Emam%} (3)
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as shown in Fig.1.

where

In practice, the filter is implemented with non-ideal ele-
ments that have finite tolerances. In order to get the higher
manufacturing yield using larger tolerances a characteristic
function should be determined with safety margins so that
the actual K (f) satisfies the new specification list

SK:{fP7fSa€7KS} (5)

as shown in Fig. 1 for an elliptic filter.

The Chebyshev, inverse Chebyshev and Butterworth
types are included in (5) as special cases for {fs — +o0o},
{fp — 0} and {fs — +oo, f, — 0}, respectively.

A filter design implies finding the design list D for a given
S

D = {fp7a767n} (6)
where f, is the pass-band edge frequency, a is the selectiv-

ity factor

-2 (7

¢ is the pass-band ripple and n is the order of the desired
filter.

The elliptic characteristic function K (f) is uniquely de-
fined by D, with w =27 f/f,

a

|R(n,w,a)

| <1 w| <1
|R(n,w,a)] > R(n,a,a)|

wl > a

(8)

K(f) =¢|R(n,w,a)l, {



while S determines only the boundary values

0 < fp < Fs
Amin < a < Gmaz
€s
_ < <
F, F, S € > €max (9)
R{n, —, —
Fy Fyp
Nmin < n
where apin and amqes can be found from:
€s
R(n,a,a) = = Gmin
€max
Fy €s Fy (10)
R|ln,—,a| = ,a> — —  Qmazx
Fy Emazx Fy

R(n,w,a) denotes the nth-order rational elliptic function.
It is known that the ordinary elliptic function provides the
minimal order n,,;, for the given S [3].

Note that €4, depends only on A, while €1, amin and
Amaz are functions of n

érm','n,(n) > Emin(n + 1) > 0
amin(n) > amin(n+1) > 1 (11)
Amaz(n) < amaz(n+1) < 400

In purely numerical procedures, the computation cost is
usually very high because the approximation step may have
to be repeated many times. Even exhaustive and repeated
calculations can fail in finding the best solution. In general,
the designer prefers an approximation that yields a design
with the minimal filter order. On the contrary, it has been
reported [6], [10]-[12] that higher-order analog and digital
elliptic filters may be much more efficient than the minimal-
order design commonly used in only-numerical procedures.

It is computationally expensive to solve a set of nonlin-
ear equations with four independent variables of D. It is
practically impossible to simplify this set of equations by
hand. The only acceptable solution is automated symbolic
computation.

The design can proceed with symbolic expressions. The
filter transfer function can be expressed in terms of poles,
s; and attenuation zeros, w;(n,a) :
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Fig. 2 General algorithm for symbolic synthesis of elliptic
filters.

A new function E(n,a,¢) is introduced to evaluate ¢ [7].

The functions R(n,w,a), wi(n,a) and E(n,a,e) are
closed-form symbolic expressions in terms of the design list
D. Thus, the transfer function poles and zeros are also
symbolic expressions in terms of n, a and ¢, i.e. D.

The general algorithm for evaluation of R(n,w,a),
wi(n,a) and E(n,a,¢) is given in Fig. 2. The design pa-
rameters a and e are given by symbols. Using the nesting
feature of elliptic functions [7], [8] the higher-order func-
tions are symbolically obtained from the lower-order ones,
by a successive recursive application of the algorithm from
Fig. 2. The order is decreased until the unit value, for
which the functions are known.

The main loop executes until the remainder of n/k is not
zero. The quantity k is a prime number greater than one
and less than n. For k = 2 and k¥ = 3 analytic closed-form
symbolic expressions are used [7],[8]. For the other prime k
values, k= 5, 7, 11, ..., the Jacobi elliptic functions can be
used. Currently, the research efforts are directed towards
the case k=5 and finding the solution free of the Jacobi
functions.

In Fig. 2, the operator X designates a procedure for sym-



bolic generation of modified and intermediate parameters
(designated by x1,...,x1’, ...). The operator F stands for the
procedures that evaluate R(n,w,a), wi(n,a) and E(n,a,¢€)
in the symbolic form. The operator ® means that all filter
quantities (poles, zeros, transfer function, pole-Q factors,
multiplier coefficients, ...) can be expressed in closed forms
(symbolically) in terms of D.

The proposed algorithm has been fully implemented and
tested in Mathematica on a PC platform.

III. APPLICATIONS OF FILTER SYMBOLIC DESIGN

A new symbolic algorithm is successfully applied in de-
sign centering and tolerance analysis. For the given speci-
fications the minimal or prescribed values of Q-factors and
minimal number of multipliers in digital filter are calcu-
lated.

Example 1. Consider a design of a low-pass elliptic filter
specified by

S = {Fp=1kHz, Fs=1.075kHz, A, =0.2dB, A, =40dB}

Let us find the minimal filter order n and the maximal
Q-factor from the prescribed manufacturer’s values [9]:

Q;€{..,22.6,30.2,32.0, ...}
The center frequency can take a value from the list [9]:

£

€{...,1.0210,1.0108, 1.0053, ...
21 Fy, { }

The minimal filter order can be calculated according to
[4]. The domain of the parameters a and e are found from
(9) for n = 8:

0 < fpmF, < Fs
1.04285 < a(n=28) < 1.08323 (14)
0.09097 < e(n=8) < 0.217

8 < n

The filter is designed as a cascaded connection of the
second-order sections. For each second-order filter section,
|si|/2nFp and @Q; are chosen independently from the cor-
responding manufacturer’s lists [9]. The actual center fre-
quency is a function of the filter’s clock rate, 6-bit control
word for |s;|/27Fp [9, pp. 6.22 - 6.23] and operating mode.
The @; of each section is also set by a separate programed
input [9, pp. 6.23 - 6.24]. This way, each second-order filter
section is tuned independently.

Using the symbolic design strategy, closed-form expres-
sions for the maximal Q-factor, @1, and corresponding
|si|/2nF) are derived first, in terms of w; and (. Next,
w1 can be eliminated and only one nonlinear equation, re-
lating Q1, |s1]|/27Fp and ¢, remains. Choosing @i and
|s1]/2m Fp, from the lists of available values, and solving the
equation for a and e (from the design domain): a=1.0559,
€=0.145562, Q1=32.0, |s1|/2wF»=1.0108. These values
meet the specification.

Let us now review the classical,
cal, approach and show its drawbacks.

purely numeri-
It starts by

Table 1 F,=1kHz, F,=1075Hz, A,=0.2 dB, A,=40 dB

test  type n Qmaz A(Fp) A(Fy)
1 Butterworth 85 -
2 Chebyshev 18 46
3 Inverse Chebyshev 18 20
4 elliptic 8 24
symbolic design 12 16 0.036 42.6

choosing a=F/Fp=1.075 and e=¢pn, = 0.09097, when
Q1,maz=24.24 and corresponding |s1|/2n F,=1.0193. Since
these values are unavailable, the adjacent values are taken.
The pass-band ripple factor obtained is greater than 0.7dB
and is far from the required value, implying failure of the
design.

Example 2. Find the minimal filter order n and the min-
imal value of the maximal Q-factor (Qmaz < 20) for the
same S given in example 1.

Usually, the classical approximations are tried first. The
design results are summarized in Table 1. Obviously, the
four classical designs failed to meet requirements: n is too
high or @ > 20.

By using the same symbolic design as in example 1, the
requirements are successfully met. According to [10]

. a—i—w?
2\/(1 - wi)(a? - w7)

for a = Fs/Fp, Qmas has been found to be Qpas = 16
for n = 6. Cascading two 6th-order elliptic filters, the
specification S is fulfilled.

Qi (15)

Example 3. The requirements are taken from [2], example
No. 4: sampling frequency Fy=16kHz and specification

S = {F,=3.4kHz, F;=4.6kHz, A, =0.2dB, A, = 65dB}

The Tth-order elliptic IIR filter, realized with 7 multi-
pliers, was used in [2] to fulfill the requirements. In [11],
in a few trials, it was shown that the requirements are
fulfilled with only 3 multipliers (82=0.2985, £3=0.8432,
64200858) and 6 shifters (Ozl = —1/25, g = (X3 = Qg =
a5 = a = —1/2%, 5= 1/2 + 1/2%) with f,=3.12kHz and
fs=4.574kHz. In spite of that f, = 3.12kHz is smaller than
Fp=3.4kHz, the maximal attenuation at the frequency F,
is substantially below A, i.e. A(0 < f < Fp) < 0.004dB,
A(f > Fs) > 66.7dB.

The target of this design is to implement a multiplier
with one adder and two shifters. It requires that the coeffi-
cients should have values b,, € {1/2941/27} (i, j integers).
For fs = 4.6kHz it was found that 35=0.5565 is the clos-
est to 1/2 4+ 1/2* The underlining idea of the symbolic
design is to express (5 in terms of a; next a is found from
Bs(a) = 1/2 4+ 1/2%.

The coefficient (5 is the pole magnitude squared, in z
plane,

_ k% + 2kos + a

S e B 16
fs k2 — 2kos +a (16)



obtained by the bilinear transformation

z—1
s=k
z4+1
with the transformation constant &
l—«o
= 17
“ 14+« (17)

while o5, given in (13), can be expressed in a simplified
form as shown in [10]:

Va(l - wi)(a - w3)

a—i—w%

g5 — — (18)
The corresponding w5 can be expressed only in terms of a
as shown in [8]. Therefore, 35 is determined by a single
nonlinear function in a single variable a. Now, from the
equation f5(a) = 1/2 + 1/2* we can determine a by using
standard numerical methods.

Note, that without symbolic simplification, a set of non-
linear equations in three variables €, a and f, must be
solved. A simplification by hand is not possible because of
the complexity of the expression 35(a).

The proposed symbolic approach enables a further sim-
plifications. The rather involved function, 35(a) is approx-
imate by the Taylor polynomial at point ¢ = amaz [11]

2 Fs
tan® m— = 1.82362
1+Oé FO

while a=—1/2% has been fixed by the design [11]. Finally,
we have a simple expression for 5

Bs(a) =

(19)

Amax =

0.556498 — 0.155813(a — amaq)

+0.114708(a — amaz)? + 0.0886438(a — amax)®
(20)

The solution of equation f5(a) = 1/2 4 1/2* is straightfor-

ward: a=1.78616.

The above symbolic algorithm yields a simple polyno-
mial analytic expression for 35(a). If the preferred values
for B85 should be changed, the new a can be determined
in the same manner by using (20). On the contrary, the
traditional numerical procedures must reevaluate all steps
from the very beginning of the design procedure.

IV. REMARKS ON SYMBOLIC DESIGN

Symbolic design approach made possible efficient realiza-
tions, sharper amplitude characteristics, nearly maximally
flat pass-band and smaller radii of the poles in parallel re-
alizations [12]. The proposed symbolic algorithm finds dig-
ital filters having one half of the coefficients exactly equal
to zero. Closed-form relations eliminate certain kind of nu-
merical errors, unavoidable in purely numerical algorithms.
In the example from [12], by using numerical approach, the
calculated coefficients are very small, but different from
zero. Usually, filter designers discard such a realization
due to increased number of nonzero coefficients (although
a half of the coefficients are nonzero due to numerical er-
rors).

Generally, from the calculated poles and zeros, the filter
coefficients are simply obtained by rounding or truncating

to the available number of bits, or they have to be assigned
to the nearest realizable values. A more complicated alter-
native is to consider finding the design list D as a problem
of discrete optimization. This way designers choose the
realizable pole and zero values that best fit into the spec-
ification S. This rather involved approach is considerably
simplified by the symbolic algorithm as shown in example
3.

V. CONCLUSION

This paper brings into focus a new general algorithm
for symbolic design of elliptic filters. The characteristic
function, the transfer function poles and zeroes of ellip-
tic filters are found as closed-form symbolic expressions in
terms of two design parameters: (1) the stop-band edge to
pass-band edge frequency ratio, and (2) the ripple factor.
Using the nesting feature of elliptic functions higher-order
characteristic functions are obtained by a successive recur-
sive application of the new algorithm introduced. The new
nesting properties are found and exploited for the symbolic
evaluation of poles and zeros.

The design algorithm proceeds symbolically until the
technological requirements are given. Symbolic synthesis
can give more insight into the influence of filter specifi-
cation on the design parameters and actual, designed, Q-
factors, poles, zeros, multiplier coefficients, etc.

The advantages of the symbolic design are illustrated by
several examples. It has been shown that the symbolic
design of analog and digital filters is much better than the
best known purely numerical design.

The original algorithm has been developed and tested in
Mathematica.
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