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Abstract

We optimize implementations of one-dimensional and
multidimensional signal processing algorithms by
rewriting subexpressions according to a set of algebraic
identi t ies. We encode the algebraic identi t ies as
conditional rules, and program hill climbing and simulated
annealing search techniques to apply the rules. Both of
these search techniques avoid an exponential explosion in
memory usage because they only keep a single state in
memory instead of building the entire tree of possible
equivalent forms. We compare the effectiveness of these
search techniques in optimizing implementations of one-
dimensional multirate signal processing algorithms. Our
prototype environment is written in Mathematica.

1 Introduction

We optimize signal processing algorithms by applying
algebraic identities to computations in algorithms to reduce
implementation cost. We handle one-dimensional and
multidimensional signal processing algorithms that involve
both fine grain and coarse grain computation. We represent
algorithms in an algebraic notation in which operators
(systems) are applied to functions (signals). Algorithms
and implementation cost can be programmed directly into
the environment or imported from another environment.
Once optimized, algorithms can be exported to other
environments.

By rearranging computation in algorithms, our
automated tools can search for a form of the algorithm that
is globally optimal or satisfies design constraints. For
example, we recently designed a touchtone decoder [11]
using the Ptolemy design environment [1][12]. Ptolemy
generated assembly code that required more data memory
that was available on the target digital signal processor
board. By rewriting the decoder algorithm using simple
identities with the goal of reducing data memory usage,

Ptolemy generated code that fit on the board.
In order to automate the optimization of signal

processing algorithms, we need

• comprehensive collections of algebraic identities for
signal processing algorithms,

• search mechanisms to apply the rules in an intelligent
manner, and

• accurate estimates of implementation cost.

We address each issue after discussing the background for
this work. We end the paper with examples.

2 Background

Automated rearrangement systems based on applying
algebraic identities to algorithms represented as algebraic
expressions have produced efficient implementations of the
following one-dimensional multirate signal processing
algorithms:

• commutativity of an upsampler and downsampler in
cascade [13],

• polyphase forms for rational rate changes [13], and
• multiband structures for optimal detectors based on the

pruned Fast Fourier Transform [14].

In [13], the automated rearrangement system performed an
exhaustive search for all alternative implementations.
Because of the exhaustive search, this approach is severely
limited because the searching requires an exponential
amount  o f  t ime  and  memory  in  the  number  o f
rearrangement rules and algorithm subexpressions. In [14],
the automated rearrangement system applied heuristics to
reduce the search. For example, the heuristics rearrange a
set of parallel computations if and only if the parallelism
(regularity) in the branches would be maintained. A similar
system exists for morphological algorithms [19].



An algebraic notation is convenient for describing and
analyzing algorithms. Algorithms in an algebraic notation
become a sequence of equations. Equations are represented
in an expression tree in which the nodes are operators
(systems) and the leaves are functions (signals). Figure 1
shows three equivalent representations of a feedback
system. Figure 1a gives a block diagram description. The
diamond represents a delay of one sample and outputs a
zero as the initial value (i.e., the value at y[-1] if the system
begins at n=0). Figure 1b gives the algebraic equation for
y[n]. Figure 1c gives the expression tree for y[n].

For Figure 1, it is possible to analyze the algebraic
representation to derive the properties of the system such
as stability, causality, linearity, and so forth, in terms of
h[n]. We have not specified the data types for the system
h[n] and the signals x[n] and y[n], nor how computation in
the algorithm will proceed. The algorithm will work
properly if it processes one sample at a time. If it were to
process two samples at a time, then the flow graph in
Figure 1a woulddeadlock because h[n] would require two
input samples. Since the delay can only initially produce
one sample in the beginning, y[-1], it cannot produce the
second sample y[0] because y[0] has not been computed
yet. This points out that algorithm rearrangement should be
performed in the context of how the algorithm will be
computed, and not imposed its own as in [13][14][23].

3 Algebraic Identities

The first step in an algebraic algorithm design
environment is identifying and deriving the key identities
used in optimizing algebraic expressions. The identities
either simplify or rearrange expressions. Simplification
removes redundant operations from an expression and
therefore lowers implementation cost. Rearrangement
produces a new equivalent expression that may sometimes
give a lower or a higher or the same implementation cost.

One set of algebraic identities relies on the properties of
the operator (system). Example properties, which include
linearity and commutativity, are given in Table 1 [22]. This
approach allows a compact representation of algebraic
identities [13][14]. For example, the fact that the order of
two linear time-invariant systems in cascade can be
switched can be captured in one identity. In this way, we
can add a new operator without needing to add any new
identities, thereby avoiding an exponential explosion in the
number of identities to capture all possible combinations
for an identity. The identities based on system properties
apply to a wide class of algorithms.

We supplement the identi t ies based on system
properties. We use the identities for one-dimensional
multirate digital signal processing operations report by
Myers [13] and Covell [14]. We also add the collection of
multidimensional multirate digital signal processing
identities reported by Evanset al. [15].

We have encapsulated all of these identities in the
computer algebra environment Mathematica [21] as if/then
rules. We represent operators using the form

x[n]
h[n]

y[n]

y[n-1]

(a) Block diagram representation of feedback.

y n[ ] h n[ ] x n[ ] y n 1–[ ]–( )•=

y 1–[ ] 0=
(b) Algebraic representation of y[n]. The solid black

h[n] −

x[n] y[n-1]

(c) Expression tree for y[n].

Figure 1:  Graphical and algebraic
representations of feedback.

The diamond represents a delay of one sample.

dot represents the convolution operator.

System Property Meaning

Associative can change grouping of inputs
Additive distributes over addition
Commutative can change order of inputs
Continuous inputs are continuous
Delay amount of delay before output is mean-

ingful
Discrete inputs are discrete
Homogeneous scaled input gives a scaled output
Linear additive and homogeneous
Linear Phase true if the frequency response is a linear

function of the frequency variable(s)
Memoryless output does not depend on previous

inputs and outputs
Separable true if separable in all dimensions, false

if completely non-separable, or a list of
variables in which operator is separable

Shift Invariant shifted input gives shifted output

TABLE 1. System properties used in algebraic
identities.



operator [ parameters ][ inputs ]

For example, a digital finite impulse response (FIR) filter
with filter coefficients 1, 2 and 1 operating on signal x[n]
becomes

DigitalFIRFilter [ {1, 2, 1}, n ] [ x[n] ]

Algebraic identities are expressed as conditional rules, e.g.

DigitalFIRFilter[{1,2,1}, n] [ Upsample[l, n][ x[n]] ] :>
PolyphaseUpsample[l, DigitalFIRFilter[{1,2,1}, n], n][x[n]]

This rule rewrites an interpolator, represented as digital
FIR filter that follows an upsample operation, in polyphase
form. This particular rule has a similar form in multiple
dimensions.

Evanset al. released a comprehensive set of identities in
the form of rewrite rules for one-dimensional and
multidimensional signal processing algorithms as part of
the freely distributable Signal Processing Packages [22] for
Mathematica [21]. The identities included over 60
rearrangement rules (13 are based on system properties)
and 78 simplification rules. The packages also include
hundreds of addit ional rules for computing one-
dimensional and multidimensional Laplace, Fourier,Z,
Discrete Fourier, and Discrete-Time Fourier Transforms of
algebraic expressions. These transforms can aid in system
analysis such as stability. The Signal Processing Packages
are available on the World Wide Web from MathSource at
http://www.wolfram.com/ .

4 Search Techniques

Search techniques are susceptible to an exponential
explosion in memory usage if they keep track of the
equivalent forms they generate. In the worst case, both
breath-first and depth-first searches have to build an
exhaustive list of all of the possible equivalent forms to
search for the optimal solution. We avoid having to keep
track of all of the equivalent forms by using hill climbing
and simulated annealing search techniques, which only
keep a single state in memory [23].

 Hill climbing and simulated annealing areinformed
searches in that they take advantage of structure in the
expression to be optimized. Both approaches require an
expression to optimize, a list of rearrangement rules, a
successor function, a maximum number of iterations, and
an evaluation function, as input arguments. The successor
function takes an expression and a list of rearrangement
rules and returns a list of equivalent expressions called
successor states. The evaluation function measures the
implementation cost of an expression and is used to rank
equivalent forms.

Hill climbing takes the original expression as the

current state. To find the next state, it generates the
successor states by applying a set of rearrangement rules to
each node in the expression tree. From the successor states,
hill climbing chooses the successor state with the lowest
implementation cost. The process continues until no
successor state can be found with a lower implementation
cost. In the solution space, hill climbing may terminate at a
local minimum, become trapped in a flat valley, or oscillate
in a crevice. When it fails to make progress, it can be
restarted at a randomly chosen subexpression. If enough
iterations are allowed, this approach will eventually find
the optimal solution with respect to the rearrangement
rules.

 Simulated annealing is similar to hill climbing except
that at every step, it chooses a random state from among
the successor states. If the new state decreases the
implementation cost, then it is always taken. Otherwise,
the new state is taken with a probability that decays
exponentially with the number of iterations performed so
far. Our current experiments in applying hill climbing to
rearranging polynomial expressions show that i t
outperforms the traditional search techniques of breadth-
first and depth-first searching in execution time and
memory usage to find the same optimal answer.

An example of using hill climbing to optimize the
implementation of polynomial expressions is shown in
Figure 2. The successor function returns a list of all

possible pairs of a xn + b xm terms from the current
expression in factored form. The evaluation function is
simply the number of operators (number of nodes in the
expression tree). Hill climbing quickly finds the optimal
implementation of the polynomial, which is Horner’s form.

We have implemented depth-first, breadth-first, hill
climbing, and simulated annealing search functions in a set
of freely distributable Heuristic Search Packages for
Mathematica. Accompanying the packages is an electronic
notebook showing several examples of heuristic searches
applied to optimize the computation of polynomials. The
Heuristic Search Packages are available on the World Wide
Web athttp://www.wolfram.com/ from MathSource.

5 Estimates of Implementation Cost

As we mentioned in Section 2, algorithm rearrangement
must be performed with knowledge of how the algorithm
will be computed in order to
• prevent introducing deadlock into the algorithm, and
• measure implementation cost.
The way an algorithm processes data is described by a
model of computation. Dataflow models of computation,
for example, express only the actual data dependencies that
exist in an algorithm, so they track the flow of data.
Dataflow models naturally describe data-intensive



operations such as multirate digital signal processing
algorithms.

In dataflow, an algorithm can be scheduled in a variety
of ways, but the schedule must honor the dependencies of
data in the algorithm. Synchronous dataflow [2] models
each operator (system) as a consumer and producer of a
fixed number of data samples for each of its inputs and
outputs. All of the data that is produced gets consumed.
The model imposes that the flow of data cannot change in a
way that is dependent on the value of data so that the model
can be converted into a schedule (an ordering of
computation) that is deterministic and fixed. The schedule
can be repeated periodically without requiring unbounded
memory. This type of data processing is well-suited for
digital signal processing in which an algorithm is applied
to every input sample or block of input samples over and
over again.

Figure 4 shows a simple algorithm consisting of two
components (subexpressions) labelled A and B. The
algorithm is modeled as a block diagram (graph) using
Synchronous Dataflow (SDF). In the SDF graph,
component A must execute three times and component B
must execute twice to balance the production and
consumption of data samples. Several possible schedules
exist, e.g. AAABB and 3(A) 2(B) and A 2(A B). In the first
schedule, A is executed three times to produce a total of 6
samples which are stored in a buffer. For each invocation of
A and B, the code implementing them is replicated. The
second schedule uses a buffer of the same size, but requires
much less program memory. The third schedule reduces

the buffer size to four samples but trades this improvement
for an increase in program memory. The implementation
cost is a weighted sum of data memory, program memory,
and execution time. The “best” schedule depends on the
weights of the cost function, the schedule, and the
implementation of A and B.

In order to obtain effic ient rearrangements of
algorithms, we need to get feedback from a software
environment that can measure the implementation cost.
The Ptolemy software environment [1][12] is a natural
choice because it can simulate and generate code for a
variety of dataflow models of computation. (Ptolemy
supports many other models of computation for simulation
such as discrete event and finite state machines, but
Ptolemy cannot currently generate code for these non-
dataflow models of computation.) Ptolemy 0.6 released in
April of 1996 contains mature schedulers and code
generators for dataflow graphs. Ptolemy 0.7 planned for
April of 1997 will have more efficient code generators
[7][8]. For Ptolemy 0.7, the authors have added the ability
of the code generators to report the data memory usage,
program memory usage, and execution time estimates for
use with our Heuristic Search Packages and Signal
Processing Packages. We are using feedback from Ptolemy
as our cost estimates during algorithm rearrangement.
When rearranging SDF algorithms, we use the SDF
Composition Theorem to decide whether a rearrangement
rule applies. The SDF Composition Theorem “establishes
four clustering criteria that together provide a sufficient
condition that a given clustering [rearrangement] operation
involving two adjacent nodes [operators] does not
introduce deadlock” [3].

6 Examples

Armed with the rules governing multidimensional
multirate signal processing and informed search techniques
to apply the rules, we investigate the optimization of signal
processing expressions. Since the use of Ptolemy and the
Signal Processing Packages and the Heuristic Search
Packages are still under development, we will give an
example of automatically simplifying an expression using

In[3]:= poly = A x + B x^2 + C x^3 + D x^4 + E x^5 + F x^6
2 3 4 5 6

Out[3]= A x + B x + C x + D x + E x + F x

In[4]:= {timing, optpoly} = Timing[HillClimbing[poly]]
Out[4]= {1.41667 Second,

x (A + x (B + x (C + x (D + x (E + F x))))) }

In[5]:= optcost = initevalpoly[optpoly]
Out[5]= 35

In[6]:= initcost = initevalpoly[poly]
Out[6]= 110

In[7]:= FactorReductionInCost = N[initcost/optcost]
Out[7]= 3.14286

Figure 2:  Hill climbing search technique in
Mathematica for optimizing polynomial
calculations. Multiplication cost was 5 units
and addition cost was 1 unit. Implementation
cost was reduced by a factor of 3.14.

A B
2 3

Figure 4:  A simple algorithm modeled using
Synchronous Dataflow. Component A produces
2 samples on its output port, and component B
consumes 3 samples on its input port.



each of the four search techniques. The search techniques
will attempt to optimize the following one-dimensional
multirate digital signal processing operation:

The downarrow represents downsampling, and the uparrow
represents upsampling. We will use a simple evaluation
function that measures the number of subexpressions. The
result of simplifying the above algorithm by the various
search techniques is given in Table 2.

7 Conclusion

In order to automate the optimization of signal
processing algorithms, we need

• comprehensive collection of algebraic identities for sig-
nal processing algorithms,

• search mechanisms to apply the rules in an intelligent
manner, and

• accurate estimates of implementation cost.

We have implemented the first two as extensions to the
Mathematica computer algebra environment. In order to
obtain accurate estimates of implementation cost, we rely

on the data memory usage, program memory usage, and
execution time estimates returned by the Ptolemy software
environment.

In our approach, we optimize one-dimensional and
multidimensional multirate digital signal processing
algorithms. Our approach allows the algorithms to have
arbitrary granularity. The algorithms can contain coarse
grain computations such as filters and resamplers, as well
as fine grain computations such as addit ions and
multiplications. Our approach can support multiple models
of computation for the same algorithm, unlike approaches
taken by [13][14][19][24][25]. A model of computation
does not describe what task a subexpression computes but
instead how it interfaces to the rest of the algorithm. In
contrast, algebraic rearrangement takes into account the
tasks that neighboring subexpressions perform when
optimizing the entire algorithm. Combining optimizations
performed by scheduling algorithms in loop with the
complementary optimizations performed by algebraic
rear rangement  w i l l  p roduce  h igh ly  op t im ize
implementations.
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