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Abstract

Classical �lter design techniques return only one de-

sign from an in�nite collection of alternative designs,

or fail to design �lters when solutions exist. These clas-

sical techniques hide a wealth of alternative �lter de-

signs that are more robust when implemented in ana-

log circuits, digital hardware, and embedded software.

In this paper, we present (1) case studies of optimal

analog and digital IIR �lters that cannot be designed

with classical techniques, and (2) the formal, mathe-

matical framework that underlies their solutions. We

have automated the advanced �lter design techniques in

software.

1. Introduction

In designing analog and digital IIR �lters, one gen-
erally relies on canned software routines or mechani-
cal table-oriented procedures. The primary reason for
these \black box" approaches is that the approxima-
tion theory that underlies �lter design includes complex
mathematics. Unfortunately, conventional approaches
return only one design, thereby hiding a wealth of al-
ternative �lter designs that are more robust when im-
plemented in analog circuits, digital hardware, and em-
bedded software. In addition, conventional approaches
may fail to �nd a �lter when in fact one exists.

We develop advanced design techniques to �nd a
comprehensive set of optimal designs to represent the
in�nite solution space. The optimal designs include �l-
ters that have minimal order, minimal quality factors,
minimal complexity, minimal sensitivity to pole-zero
locations, minimal deviation from a speci�ed group
delay, approximate linear phase, and minimized peak
overshoot. For digital �lters, the design space also in-
cludes �lters with power-of-two coe�cients. We base

our approach on formal, mathematical properties of
Jacobi elliptic functions [1, 2]. We automate these ad-
vanced �lter design techniques in software [3, 4].

The key observations underlying advanced �lter de-
sign are that

1. many designs satisfy the same user speci�cation;

2. Butterworth and Chebyshev IIR Filters are special
cases of Elliptic IIR Filters; and

3. minimum-order �lters may not be as e�cient to
implement as some higher-order �lters.

We �rst review our case studies in minimizing qual-
ity factors for a switched-capacitor �lter design from
a �nite set of manufactured sections [5] and a reduced
multiplier �lter [6]. In both cases, the �lter optimiza-
tion problem is a mixed-integer linear programming
problem so the classical techniques break down. In-
stead of using iterative numerical techniques, we solve

these problems using closed-form algebraic expressions.
Then, we present several new case studies of optimal
analog and digital IIR �lters that cannot be designed
with classical techniques, and the formal, mathemati-
cal framework that underlies their solutions.

2. Design space

We focus our attention on a lowpass prototype �lter
that serves as the basis for the design of a lowpass, high-
pass, bandpass, or bandstop �lter. First, we map the
user speci�cation into a characteristic function speci-
�cation SK to provide a clearer relationship between
the design parameters and the speci�cation

SK = fFp; Fs;Kp;Ksg (1)



Next, we identify the design parameters. Finally, we
calculate the limits of the design parameters. The sym-
bols Fp and Fs designate the passband edge frequency
and the stopband edge frequency, respectively, in Hz.

An in�nite number of characteristic functions that
�t SK exist. We consider the elliptic function approx-

imation, because it ful�lls the requirements with the
minimal transfer function order. The minimal order
can often lead to the most economical solution (the
minimal number of components, the minimal number
of multiplications, and so forth).

The prototype elliptic approximation, Ke, is an nth-
order rational function in the real variable x

Ke(x) = �jR(n; �; x)j (2)

where R, referred to as the rational elliptic function,
satis�es the conditions

0 � jR(n; �; x)j � 1; jxj � 1
L(n; �) � jR(n; �; x)j; jxj � �

(3)

where L is the minimal value of the magnitude of R for
jxj � �

L(n; �) = jR(n; �; �)j (4)

The normalized transition band 1 < x < � is de�ned
by

1 < jR(n; �; x)j < L(n; �); 1 < jxj < � (5)

The parameter � is called the selectivity factor.
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Figure 1. Characteristic function.

The parameter � determines the maximal variation
of Ke in the normalized passband 0 � x � 1

0 � Ke(x) � �; jxj � 1 (6)

and is called the ripple factor.
The elliptic approximation, K, is a rational function

in frequency ! rad/s, Fig. 1,

K(!) = Ke(x); x =
!

2�fp
(7)

where fp represents a design parameter that we call the
actual passband edge. Traditionally, it has been set to
fp = Fp.

The four quantities, n, �, �, and fp, are collectively
referred to as design parameters and can be expressed
as a list of the form

D = fn; �; �; fpg (8)

Each of the listed parameters can take a value from a
continuous range (�,�,fp) or discrete range (n) of num-
bers. The order n is also referred to as the �lter or-

der. The ordinary elliptic function provides the mini-
mal order, nmin = nellip, for a given speci�cation. The
maximal order, from the practical viewpoint, can be
assumed to be nmax = 2nmin.

The selectivity factor, �, ripple factor � and actual
passband edge fp fall within the limits which are found
in [7]. The set of all quadruples D = fn; �; �; fpg, sat-
isfying the constraints fnmin � n � nmax, �min � � �
�max and �min � � � �max, fp;min � fp � fp;maxg is
called the design space.

DS = fDS;ngn=nmin;nmin+1;:::;nmax (9)

DS;n =

8>><
>>:

n
�min(n) � � � �max(n)

�min(n; �) � � � Kp

fp;min(n) � fp � fp;max(n)g

(10)

Since the integer order n takes only discrete numeric
values, it is more convenient to express the design
space, DS , as a list of subspaces, DS;n:8>>>>>>>>>>>><
>>>>>>>>>>>>:

8>><
>>:

n = nmin

�min(n) � � � �max(n)
�min(n; �) � � � Kp

fp;min(n) � fp � fp;max(n)
:::8>><
>>:

n = nmax

�min(n) � � � �max(n)
�min(n; �) � � � Kp

fp;min(n) � fp � fp;max(n)
(11)

where

0 < �min(n+ 1) < �min(n)
1 < �min(n+ 1) < �min(n)

�max(n) < �max(n+ 1) � 1

0 � fp;min(n+ 1) < fp;min(n)
fp;max(n) < fp;max(n+ 1) � 1

(12)

3. Basic design alternatives

This section presents our case studies of a compre-
hensive set of design alternatives based on the design
space.
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Figure 2. Design D1.
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Figure 3. Design D2.

Design D1 sets the three design parameters, � = Fs=Fp,
� = Kp, fp = Fp, directly from the speci�cation, Fig. 2.

Design D2 sets the two design parameters, � =
Fs=Fp, fp = Fp, directly from the speci�cation, Fig. 3.
The ripple factor is computed from � = Ks=L(n; �).

In design D3a, we choose the minimal selectivity
factor, � = �min, and set the two design parameters,
� = Kp, fp = Fp, directly from the speci�cation, Fig.4.

For design D3b we choose the minimal selectivity
factor, � = �min, the same as in the Design 3a, and
set the ripple factor, � = Kp, directly from the speci�-
cation, Fig. 5. The actual passband edge is computed
from fp = fp;max = Fs=�.

In design D4a we choose the maximal selectivity
factor, � = �max, and set the two design parameters,
� = Kp, fp = Fp, directly from the speci�cation, Fig.6.

For design D4b we choose the maximal selectivity
factor, � = �max, the same as in design D4a, Fig. 7, and
calculate the ripple factor from � = Ks=L(n; �). The
actual passband edge is computed from fp = fp;min =
Fs=�.

By increasing the �lter order, n > nellip, we arrive at
the Chebyshev type approximation, for n = nC ; design
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Figure 4. Design D3a.
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Figure 5. Design D3b.

D4a degenerates from rational polynomial to a polyno-
mial (allpole) �lter (fp = Fp, fs ! 1). Alternatively,
for the same order, n = nC , design D4b yields an In-
verse Chebyshev type �lter (fs = Fs, fp ! 0). When
the �lter order is equal to the order of the Butterworth
type �lter, the maximal transition design D4 trans-
forms into an allpole Butterworth type �lter (fp ! 0,

fs ! 1). This means that the classical �lter types,
Chebyshev, Inverse Chebyshev and Butterworth, are
just special cases of the elliptic function �lters, and are
contained within the design space DS .

4. Example

A lowpass �lter will be designed to meet the atten-
uation speci�cation

SA = fFp; Fs; Ap; Asg = f3 kHz; 3225 Hz; 0:2dB; 40dBg

We will consider the mapped speci�cation

SK = fFp; Fs;Kp;Ksg = f3 kHz; 3225 Hz; 0:2171; 100g

and the actual speci�cation of a realized �lter, Se =
ffp; fs; �; �Lg, where the set of inequalities ffp <
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Figure 6. Design D4a.
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Figure 7. Design D4b.

Fs; fs > Fp; � < Kp; �L > Ksg must be satis�ed. First,
the minimal �lter order is calculated to be n = 8. Next,
the range of fp, fs and � is determined for n � 8:

Filter Order, n
Units 8 9 10 2� 6 = 12

�min � 0:0910 0:0319 0:0112 0:1044
�max � 0:2171 0:2171 0:2171 0:2171
fp;max Hz 3092 3156 3189 3101
fs;min Hz 3129 3066 3034 3120
fs;max Hz 3250 3294 3360 3263
Qmin � 24 26 28 15
Qmax � 42 81 156 26

The design subspaces for n = 8, n = 9 and n = 13
are shown in Figs. 8, 9 and 10.

The table shows that the quality factorQ varies from
15 to 156. Some standard programs (like MATLAB)
will result in Q = 42, which is too high for practi-
cal implementations. Classical approximations will be
also unacceptable: the order of the Butterworth �lter is
extremely high (n = 85), while the order of the Cheby-
shev and Inverse Chebyshev type is also high (n = 18)
with high Q-factors (Qcheb = 46 and Qinvcheb = 20).
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Figure 8. Design space for n = 8.
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Figure 9. Design space for n = 9.

For the realization of an 8th-order �lter, a high-Q
building block (with two ampli�ers per second-order
section) is recommended in [8], and 4 � 2 = 8 ampli-
�ers are required. In the case of the 12th-order �lter,
medium-Q building blocks are preferred (with 1 am-
pli�er per second-order section), hence 6 ampli�ers are
used. Therefore, in spite of the increased �lter order,
two fewer ampli�ers are used, the power dissipation
is lower, and better dynamic range and smaller group
delay variation are obtained.

The range of �, �, fp and fs are shown in Figs. 11
and 12. The minimal �lter order, n = nmin implies
a small range for the design parameters and the opti-
mization of �lter behavior can be ine�ective.

It is also worth noticing that increasing the �lter or-
der, n > nmin, does not necessarily lead to a better
solution; however, in many practical �lter designs, the
improvement was considerable. For example, the clas-
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Figure 10. Design space for n = 13.
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sical �lter design failed to meet the speci�cation in the
case of a switched capacitor (SC) �lter. However, a de-
sign based on our approach was implemented, and the
measured �lter characteristics showed that advanced
�lter design was successful [5]. The group delay of the
basic designs are plotted in Figs. 13 and 14.

The maximum delay is obtained for minimal tran-
sition designs, D3a and D3b, while the maximal tran-
sition designs, D4a and D4b, have lower group delay
variation. Design D3b has the minimal variation of
the group delay in the passband, while the similar de-
sign D3a has the highest overall group delay variation.
Design D5, which is based on the minimal Q-factor pro-
totype [2], also has a small variation of group delay in
the passband.

The step responses of the basic designs are shown
in Fig. 15. The shape of all responses is the same with
approximately the same amount of overshoots (D3a
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Figure 12. Design space of fp, fs and n.
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Figure 13. Delay in the transition region.

and D3b have the largest overshoot). As we expect,
D4b has the smallest time delay. However, design D4a,
which also has good group delay characteristics, has
the worst time delay.

Finally, we present the attenuation characteristic
of a multiplierless IIR digital �lter, which was de-
signed by using the proposed advanced design tech-
nique, shown in Fig. 16. For the minimal �lter order,
n = 7, it was impossible to design a multiplierless �l-
ter, because coe�cient quantization makes the design
fail to meet the speci�cation SA = fFp; Fs; Ap; Asg =
f3:4 kHz; 4:3 kHz; 0:2 dB; 65 dBg, Fsamp = 16 kHz.
By increasing the �lter order from 7 to 9, we enlarge
the design space. Next, we �nd the closed-form ex-
pressions for all coe�cients in terms of the selectivity
factor � (design D5 was selected). Then, we optimize
� by minimizing the error function constructed as a
sum of squared di�erences between calculated coe�-
cient values and power-of-two values.
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5. Conclusion

We present several case studies of optimal analog
and digital IIR �lter design, and show that conven-
tional approaches to �lter design either return only one
design thereby hiding a wealth of robust alternatives or
fail to �nd a design when a design exists. We develop
advanced design techniques to �nd a comprehensive
set of optimal designs to represent the in�nite solution
space. The optimal designs include �lters that have
minimal order, minimal quality factors, minimal com-
plexity, minimal number of multipliers, power-of-two
multipliers, etc. We have observed that many designs
satisfy the same user speci�cation, and that minimum-
order �lters may not be as e�cient to implement as
some higher-order �lters.
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