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ABSTRACT

In a multi-transmitter broadcast system, the weight vector
for each message signal can provide an additional degree
of freedom for signal enhancement and interference sup-
pression by taking advantage of the spatial diversity among
the users. The design of optimal weight vectors that maxi-
mize the overall channel capacity is an open problem. Un-
der certain power constraints, the channel capacity R is a
highly nonlinear function of the M -dimensional weight vec-
tors fwig, whereM is the number of transmitters. Hence, a
closed-form algebraic solution that maximizes R over fwig
does not seem to be tractable. In this paper, we decou-
ple the weight vectors in R to simplify the optimization
problem to a search for the maxima of a smooth multidi-
mensional function. Based on this decoupling, we derive
and evaluate two algorithms for computing weight vectors
for the two-user and three-user cases: orthogonal and op-
timal. We also propose a near-optimum algorithm for the
two-user case. The optimal algorithm requires an iterative
search.

1. INTRODUCTION

During the 1990s, the demand for wireless communications
and mobile cellular communications has dramatically in-
creased. One way to increase the capacity and improve
the performance of existing wireless communications sys-
tems is to incorporate the use of spatial diversity. Since
Cover's novel work in single-transmitter broadcast channels
[4], researchers have been exploring the use of both multi-
transmitter and multi-receiver systems [1, 3]. In this paper,
we focus on multi-transmitter broadcast systems.

A multi-transmitter broadcast channel is a communica-
tion channel in which an antenna array system is transmit-
ting to two or more receiving users. In order to optimize
performance of the communications system, we must �nd
the optimal weight vector for each message signal that max-
imizes the overall channel capacity. In this paper, we study
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channel capacity assuming only independent decoding since
it is more feasible to implement in practical systems than
joint decoding.

Recent investigations in wireless communication systems
using antenna arrays, called Spatial-Diversity-Multiple-
Access (SDMA) systems [2, 5, 6], have attempted to exploit
spatial diversity among the users. The design of the optimal
weight vectors that maximize the overall channel capacity
of the broadcast channels, however, is still an open problem.
The primary reason is that under certain power constraints,
the channel capacity R is a highly nonlinear function of the
M -dimensional weight vectors fwig, where M is the num-
ber of transmitters. We presented preliminary results for
the two-user case in [7].
In this paper, we decouple the weight vectors in R to sim-

plify the optimization problem to a search for the maxima of
a smooth multidimensional function. The multidimensional
function has P (P � 1) dimensions where P is the number
of users. Based on the decoupling of the weight vectors, we
derive and evaluate two algorithms for computing weight
vectors for the two-user and three-user cases: orthogonal
and optimal. We also present a near-optimum algorithm
for two-user case. The optimal algorithm requires an iter-
ative search. The orthogonal and near-optimal algorithms
are based on closed-form solutions, and are easier to imple-
ment than the optimal algorithm, esp. on a programmable
digital signal processor.

2. BACKGROUND

In [7], we consider maximizing the channel capacity in
a two-user broadcast system with multiple transmitters.
Now, we consider more general problem formulation. We
let fsi(t)g be the message signals. The base station weights
each message signal with a weight vector and then transmits
the superimposed signal from an array with M elements:

y(t) =

dX
i=1

�iwis1(t):

The signals fsi(t)g are assumed to be i.i.d. with Gaus-
sian distribution; fwig are normalized weight vectors, i.e.,
kwik = 1; i = 1; : : : ; d; and f�ig are the transmitting mag-
nitudes which are subject to certain power constraints. For
simplicity, we assume
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If independent decoding is employed at the user receivers,
then the achievable channel capacity for each user can be
expressed as log(1 + SINR), where SINR is the signal-to-
interference noise ratio:
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where ai = (ai;1 ai;2 � � � ai;M)T is a unit vector representing
the direction of the spatial signature vector of the ith user,
and �i is the magnitude of the spatial signature vector of
the ith user. The spatial signature vector, a.k.a. the steering
vector, of the ith user represents the propagation pattern of
the ith user, and is equal to �i ai. The noise power has been
normalized to unity.
The goal is to select the weight vectors [w1 � � � wd] that

maximize the total channel capacity R1 + � � � +Rd. Maxi-
mizing the total channel capacity is di�erent than maximiz-
ing the signal-to-interference-noise (SINR) ratio for each
user, as is seen in (1). Maximizing the SINR, however,
is a �rst-order approximation to the total channel capac-
ity. The �rst term in the Taylor series for log(1 + SINR)
is SINR. To a �rst-order approximation, (1) is equal to
SINR1 + � � �+ SINRd, which is the total SINR.

3. DECOUPLING WEIGHT VECTORS

Theorem 1 The optimal weight vectors that maximizes the

channel capacity are in signal subspace A and can be written

as linear combinations of spatial signature vectors.

Proof:

wi = �aiA+ �biB (2)

where A = [a1 � � � ad] is the spatial signature matrix;
B = [bd+1 � � � bM ] which denotes the orthogonal sub-
space of A, i.e., A ? B; �ai = [�ai;1 � � � �ai;d] and
�bi = [�bi;d+1 � � � �bi;M ] Clearly, we have to show that
k�bik2 = 0. As seen from the capacity formulation, f�big
will not directly contribute to �ij which will be de�ned in
next Section; however, f�big will be in the power constraint

kwik = k�aik2 + k�bik2 = 1: (3)

It is obvious that k�bik2 = 0 should be true not to waste
any energy in the orthogonal subspace. A similar theorem
is also applicable to the case in which the average SINR is
maximized [9]. 2

4. TWO-USER CASE

For a given (�1; �2) pair and a given (a1; a2) pair, our goal
is to �nd the weight vectors w1 and w2 that optimize the
total channel capacity R = R1 +R2. Denote

�11 = wH
1 a1a

H
1 w1 �12 = wH

2 a1a
H
1 w2

�21 = wH
1 a2a

H
2 w1 �22 = wH

2 a2a
H
2 w2

(4)
where �ij = cos2 6 (wi; aj) is a measure of the angle between
the ith weight vector and the jth spatial signature vector.
Thus, each �ij term is con�ned to [0; 1].
It is seen from (1) that for certain �11 and �22, R is

optimal if the relationship between �21 = wH
1 a2a

H
2 w1 =

cos2 6 (w1; a2) and �12 = wH
2 a1a

H
1 w2 = cos2 6 (w2; a1) are

determined. The focus of the problem is to �nd the max-
imum values of �11 and �22 in terms of �21 and �12 or to
�nd the minimum values of �21 and �12 in terms of �11 and
�22, respectively. The relationship between can be found
by substituting (3) into the �rst two equations in (4) and
wH
1 w1 = 1

�
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p
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� = a
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H

2 a1 = cos2 6 (a1; a2): (6)

so 0 � � � 1. Although f�ijg = r�ije
j��ij and aH1 a2 =p

�e�� are usually complex numbers we can always adjust
the phases to cancel out each other without a�ecting the
values of �ij and the norm of weight vectors and spatial
signature vectors. Therefore, we can solve the equations in
(5) for absolute values of �11, �12, and �11. And, we found
the following relation between �11 and �21

�11 =

�p
��21 +

p
(1� �)(1� �21)

�2
: (7)

This result was found in [7] by using Langrage multipliers.
If we follow the same procedure for w2, we will see that the
similar function is true for w2. The channel capacity can
be rewritten in terms of �12 and �21.

The optimization problem is to maximize
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with respect to �12 and �21 subject to the constraints

0 � �12 � � � 1
0 � �21 � � � 1

(9)

where
� = aH1 a2a

H
2 a1 = cos2 6 (a1; a2)


ij = �2i �
2
j for i; j = 1; 2:

(10)

4.1. Orthogonal Weight Vector Algorithm

Due to the additional degrees of freedom introduced by mul-
tiple transmitters, one can manipulate the complex weight
vectors to enhance the desired signal and at the same
time, suppress the interference. There exists wi such that
wH

i ai = �ij which can completely eliminate the interference
from one to the other. When wH

i aj = �(i; j), the channels
are orthogonal and each message can be transmitted with-
out interference. As shown in Figure 1, w1 should be in
the direction of P?

a2
a1, where P

?
a2

denotes the projection



operator to the orthogonal space of a2. Orthogonal weight
vectors correspond the following parameter values:

�11 = 1� � �12 = 0
�21 = 0 �22 = 1� �

(11)

However, this selection is generally not optimal in channel
capacity, since the desired signal power at the receiver may
be reduced as well.

4.2. Optimal Weight Vector Algorithm

To �nd the optimal weight vectors, we want to maximize
the non-linear objective function (8) with respect to vari-
ables �11 and �22 subject to (10). The objective function
is continuous and twice di�erentiable, the constraints are
continuous and twice di�erentiable, and the solution space
is convex. As a consequence, the optimization problem has
a global maximum. Although a closed-form solution for the
global maximum may not exist, numerical methods can be
used to search for the global maximum. For example, the
global optimum solution will always be found by the iter-
ative Sequential Quadratic Programming method [8]. An
alternative iterative search algorithm is proposed below:

1. Choose values for �12 and �21.

2. For the given (�12; �21) pair, �nd the legitimate w1

which maximizes cos2 6 (w1; a1) and w2 which maxi-
mizes cos2 6 (w2; a2). Evaluate R using (8).

3. Repeat steps 1 and 2 for a �nite number of times and
identify the optimal pair (�12;opt; �21;opt) which maxi-
mize R in (8).

4. The weight vectors that correspond to �12;opt and
�21;opt in step 2 are the solutions.

Step 3 involves only a two-dimensional searching, which is
tractable in general but computational expensive. Next, we
derive a near-optimum closed-form solution that is simple
to compute.

4.3. Near-Optimal Weight Vector Algorithm

After substituting �21 = cos2(�2), �12 = cos2(�1), and � =
cos2(�) into (8) and performing logarithmic manipulations,
the channel capacity can be rewritten as

1

2
log (J(�1; �2)) =

1

2
log
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11 cos(�2 � �)2
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12 cos(�1)2

�
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1 + 
21 cos(�2)2

��
: (12)

The maximum total capacity of a two-user broadcasting
system depends on two variables, �1 and �2. These variables
denote the angles between the weight vectors and the spatial
signature vectors, as seen in (4). Since the logarithm is a
monotonic increasing one-to-one function over the positive
numbers, maximizing the total channel capacity in (12) is
equivalent to maximizing J(�1; �2). A good initial guess at
the optimum value is �1 = � and �2 = �, which are the left
endpoints of �12 and �21, respectively, because they bring
the cosine terms in the numerators in (12) to 1. We re�ned
this approximation using perturbation (sensitivity) analysis
to �nd the local optimal value [7]. The near optimum angle

between the ith weight vector and the jth spatial signature
vector is

�i = �+ 2 cos
2
(�)4�i (13)

where

4�i =

ji
jj cos(�) sin(�)(1 + 
ii + 
ij cos

2(�))


ii(1 + 
ji cos2(�))(1 + 
jj + 
ji cos2(�))
(14)

where i; j = 1; 2 and i 6= j. Since the perturbation analysis
returns an approximation of the local optimum angles, the
boundary conditions must be explicitly checked to ensure
that the local optimum value is a local maximum. For each
angle, two boundary conditions on kij (i.e., �i = � and
�i = �) and one local optimum value (i.e., �i in (13)) exist.
With two angles, a total of nine angle pairs (three times
three) must be substituted into J(�1; �2) and the pair that
produces the largest J(�1; �2) value is the local maximum.
Using the closed-form solutions in (13), the near-optimum

weight vectors can be found by the following steps:

1. Compute � = cos2(�) in (6) using the given (a1; a2)
spatial signature pair,

2. For i = 1; 2 and j = 1; 2, compute 
ij in (10) using the
given (�i; �j) values

3. Compute near-optimum �1 and �2 angles in (13) and
(14).

4. Check boundary conditions and near-optimum angle
values by substituting all nine possible angle pairs for
J(�1; �2) in 12 and keep the angle pair (�

0
1; �

0
2) that gave

the largest value of J(�1; �2).

5. The weight vectors which corresponding to (�01; �
0
2) are

the solutions.

5. THREE-USER CASE

For the three-user case, our goal again is to maximize the
total channel capacity R = R1+R2+R3. As in the two-user
case, denote

�ji = cos2 6 (wi; aj): (15)

Now, the focus of the problem is to �nd the relationship
between �ii and f�ji; j 6= ig. Applying Theorem 1, we could
derive the following relation between �11 and (�21; �31):

�11 =
�p

�12�21 �
p

�13�23�21 +
p

�13�31�p
�12�23�31 +

p
(1� �12 � �13 + 2�12�13�23 � �23)�p

(1� �23 � �21 + 2�23�21�31 � �31)

�2
=(1� �23)

2
(16)

where �ij = cos2 6 (ai; aj). Similar derivations can
be carried out to �nd the relations between �22 and
(�12; �32) and between �33 and (�13; �23). Using the re-
lations, channel capacity can be expressed in terms of
(�21; �31; �12; �32; �13; �23). For each kii, the solution
amounts to solving a set of linear equations and substi-
tuting the result into wHw = 1. The parameter val-
ues for orthogonal weight vectors are �ij = 0; i 6= j and
�11 = (1 � �12 � �13 + 2�12�13�23 � �23)=(1 � �23) , and
(�22; �33) can be found similar to �11. However, as in the



two-user case this selection is generally not optimal in chan-
nel capacity. To �nd optimal weight vectors for the three-
user case, we have to maximize the channel capacity with
respect to variables (�21; �31; �12; �32; �13; �23). A similar
iterative algorithm in Section 4.2. can be used to search for
the maximum.

6. NUMERICAL EXAMPLES

In this section, numerical examples are given to compare
numerical search method and near-optimum closed form
solution for the two-user case. We also plot the single an-
tenna capacity and naive time sharing performance. In the
numerical example, we consider the case where we have a
linear uniform array with 8 antenna elements transmitting
to two users. In the example shown in Figure 2, the angle
between spatial signature vectors and the gains of spatial
signature vectors, respectively, are � = 54, �1 = 1:22, and
�2 = 1:333. Another example is primarily presented to
compare the maximum total capacities with the orthogonal
weight vectors and the optimal weight vectors with respect
to the angle between the spatial signatures. As shown in
Figure 3, the di�erence becomes very signi�cant when the
angle between the spatial signature vectors are small.
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