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Abstract

We generalize an existing family of wavelets, coiflets,
by replacing the zero-centered vanishing moment condition
on scaling functions by a nonzero-centered one in order to
obtain a novel class of compactly supported orthonormal
wavelets (we call them generalized coiflets). This gener-
alization offers an additional free parameter, i.e., the cen-
ter of mass of scaling function, which can be tuned to ob-
tain improved characteristics of the resulting wavelet sys-
tem such as near-symmetry of the scaling functions and
wavelets, near-linear phase of the filterbanks, and sampling
approximation properties. Therefore, these new wavelets
are promising in a broad range of applications in signal
processing and numerical analysis.

1. Introduction

In the last decade, the discrete wavelet transform (DWT),
which is implemented by a multirate filterbank (FB), has
been demonstrated to be a powerful tool for a diversity of
digital signal processing applications. Among the numerous
wavelets that have been proposed, compactly supported and
real-valued wavelets having the orthonormal and perfect
reconstruction (PR) properties have been the most widely
used. The associated FBs have finite impulse responses
(FIR) and real-valued coefficients. In many applications
(e.g., image processing), one desirable property for FBs is
linear phase, which corresponds to the symmetry or anti-
symmetry of the associated wavelets and the symmetry of
the associated scaling functions. However, it is well-known
that there does not exist any non-trivial, symmetric scaling
function in this family [2]; i.e., in order to obtain symmetric
scaling functions, at least one of the above properties has
to be given up. One possible solution to this dilemma is to
construct nearly symmetric scaling functions while main-
taining those useful properties, thereby producing FBs with
nearly linear phases. The particular class of wavelets known

ascoifletsare near-symmetric. They have the same number
of vanishing moments for both the scaling functions (cen-
tered at zero) and the wavelets. In addition, coiflets have
been shown to be excellent for the sampling approximation
of smooth functions.

In this paper, we construct a new family of wavelets
(we call themgeneralized coiflets) by replacing thezero-
centeredvanishing moment condition on the scaling func-
tions of coiflets by anonzero-centeredone. The merit of
such a generalization is that it offers one more free parame-
ter, i.e., the center of mass of the scaling function (denoted
by �t ), which uniquely characterizes the first several zero-
centered moments of scaling functions, and is hence related
to the phase response of their FBs at the low frequencies and
can be tuned to reduce the phase distortion. In addition, by
choosing a proper�t, wavelets that are nearly odd-symmetric
are obtained. For a fixed�t, we apply Newton’s method
to construct the lowpass filters associated with the gener-
alized coiflets iteratively. We show that generalized coiflets
are asymptotically symmetric and their filters are asymptot-
ically linear phase as the order tends to infinity. We formu-
late a general framework for minimizing the phase distor-
tion of the lowpass filters under various criteria. We study
the accuracy of generalized coiflets-based sampling approx-
imation of smooth functions by developing the convergence
rates forL2-norm of the approximation error. Due to space
limitation, we omit all the proofs of our results, which will
be given in [4] and [5].

2. Background

We highlight fundamental results from wavelet theory
[2] on which this paper is based. Leth(n) be the lowpass
filter in a two-channel orthonormal wavelet system. The
scaling function�(t) is recursively defined by thedilation
equation

�(t) =
p
2

X
n2Z

h(n)�(2t� n) (1)



and the wavelet (t) is defined as

 (t) =
p
2

X
n2Z

g(n)�(2t� n)

where the lowpass filterh together with a highpass filterg
constitute a pair of conjugate quadrature filters (CQFs); i.e.,

g(n) = (�1)
n
h(n1 + n2 � n) (2)

where[n1; n2] is the support of the FIR filtersh andg. The
orthonormal condition is given by

X
n2Z

h(n)h(n� 2k) = �k (3)

for k 2 Z, where�k denotes the Kronecker delta symbol.

3. Definition

Definition: A wavelet is called ageneralized coiflet of
order l (denoted by l;�t) if for some�t 2 R, the wavelet l;�t
and its scaling function (denoted by�l;�t) satisfy

Z
R

(t� �t )
p
�l;�t(t) dt = �p

Z
R

t
p
 l;�t(t) dt = 0

for p = 0; 1; : : : ; l � 1.
Note that�t is the center of mass of the scaling function

�l;�t. When�t = 0, the generalized coiflets reduce to the orig-
inal coiflets constructed by Daubechies [3]. The vanishing
moment conditions in the above definition are equivalent to
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X
n2Z

(�1)
n
n
p
hl;�t(n) = 0 (5)

for p = 0; 1; : : : ; l � 1.

4. Construction

It was shown that a generalized coiflet system can be
constructed by solving a set of multivariate nonlinear equa-
tions for the filter coefficients [4]. These equations can be
derived from (3), (4), and (5). We apply Newton’s method
to solve them iteratively. Define anNl � 1 vector

hl;�t
4
=
�
hl;�t(�l); hl;�t(�l + 1); : : : ; hl;�t(Nl � l � 1)

�T

whereNl = 2b3l=2c and the superscript “T ” denotes ma-
trix transpose. Letf l : RNl ! R

Nl be a vector-valued
function defined as

f l(hl;�t)
4
=
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where all the summations are fromn = �l ton = Nl�l�1.
Therefore, the equation

f l(hl;�t) = 0Nl

gives a set ofNl independent equations in (3), (4), and (5),
where0Nl

denotes the zero vector of lengthNl. The ap-
proximate solution to this equation in thekth iteration is
denoted byhkl;�t. With an initialization ofh0

l;�t, Newton’s
iteration becomes

hk+1

l;�t
= hkl;�t �

�
f 0l(h

k

l;�t)

��1

f l(h
k

l;�t)

wheref 0l denotes the Gateaux-derivative off l and the op-
erator(�)�1 denotes matrix inversion. The initial choice of
h0

l;�t
is not arbitrary because some choices may cause the

iteration to diverge. In our design, we choose the original
coiflet filter one order lower than the generalized coiflet fil-
ter we aim to construct as the starting solution; i.e.,

h
0

l+1;�t =

( �
0 (h0

l;0
)
T

0
�T

if l is even�
0 (h

0

l;0)
T

0 0 0
�T

if l is odd:

The iteration stops when the difference betweenhk+1

l;�t
and

h
k

l;�t is small enough (e.g., its norm is smaller than a given
threshold). In our experiments, with such an initialization
scheme, the Newton iteration always converges.

5. Near-Symmetry and Near-Linear Phase

We use the phase of the Fourier transform of a scaling
function to measure its symmetry. If�l;�t is nearly symmet-

ric, then the phase ofb�l;�t is close to a linear function of



frequency. The following proposition indicates how good
this approximation is at low frequencies. Due to the low-
pass nature of�l;�t, in the frequency domain its energy is
mostly distributed at low frequencies. Therefore,�l;�t is
nearly symmetric.

Proposition 1:If j!j is sufficiently small, then

\b�l;�t(!) = ��t! + C�l;�t
� !l +O(!

l+1
)

where the constantC�l;�t
only depends on�l;�t; the scaling

function of a generalized coiflet is asymptotically symmet-
ric, i.e., for each!,

lim
l!1

\b�l;�t(!) = ��t !:

Now we study the phase distortion of the lowpass fil-
ters associated with the generalized coiflets. Since the co-
efficients of these filters are real-valued, we only consider
! 2 [0; �]. For a lowpass filter, there are two types of sym-
metry. If for some�n, a filterh satisfiesh(n) = h(2�n� n),
then we say thath is whole-point symmetric(WPS) about
�n if �n 2 Z, and half-point symmetric(HPS) about�n if
(�n+ 1

2
) 2 Z . In both cases, the phase response\H(ej!) =

��n!. If a filter is asymmetric, then its phase distortion can
be measured as the deviation of the phase response from a
linear function of frequency with some desired slope.

There is a well-known fact [1] regarding the relationship
between the symmetric type of a wavelet and its associ-
ated lowpass filterh: if h is WPS, then is even-symmetric,
and vice versa; ifh is HPS, then is odd-symmetric, and
vice versa. It has been observed that the lowpass filters as-
sociated with the original coiflets are nearly WPS [3]. In
fact, for anlth-order original coiflet, its filterHl;0(e

j!
) has

(l � 1) zeros at! = 0, and hence a flat, near-zero phase in
the neighborhood of DC. In the following proposition, we
show that in general,Hl;�n(e

j!
) is close to linear phase at

low frequencies.
Proposition 2:If j!j is sufficiently small, then

\Hl;�n(e
j!

) = ��n! + Chl;�n
� !l +O(!

l+2
)

where the constantChl;�n
only depends onhl;�n; the lowpass

filter associated with a generalized coiflet possesses asymp-
totically linear phase, i.e., for each! 2 [0; �),

lim
l!1

\Hl;�n(e
j!

) = ��n!:

Though the above proposition is true for all real�n, only
integers and half-integers are of interest. Thus, we define

Z2

4
= fn : 2n 2 Zg. An advantage of introducing half-

integer �n is that filters close to HPS can be constructed,
which are more useful than WPS filters in many applica-
tions.

6. Minimization of Phase Distortion

From Proposition 2 we know that the filterhl;�n, �n 2 Z2,
has nearly zero phase distortion ifj!j is small enough.
However, the phase distortion at the other frequencies can
be much larger. The resulting phase response may not be
satisfactory in many applications that require uniformly in-
significant phase distortion over a broad frequency band.

The phase response at low frequencies is uniquely char-
acterized by the first several moments of the scaling func-
tion, and hence by the parameter�t in the case of the gen-
eralized coiflets. Thus, we attempt to use this parameter to
obtain smaller phase distortion. Though, for any�t 62 Z2

the property of near-zero phase distortion around DC will
be lost, the gain lies in the fact that phase distortion can be
largely reduced over a broad frequency band. For a given
�t 2 R, we expect that\Hl;�t(e

j!
) is close to� [2�t ]

2
!.

While adjusting the parameter�t may also improve the
near-symmetry of the scaling function�l;�t and the wavelet
 l;�t, in this paper we restrict our attention to the phase dis-
tortion of the lowpass filterhl;�t.

Since in a typical DWT-based application the input sig-
nal is convolved with a wavelet filterbank, the phase re-
sponse of the output signal is a sum of those of the input
signal and the filterbank. Therefore, the phase distortion
on the output signal, which is additive and caused by the
non-linearity of the phase response of the filterbank, can be
viewed as the difference between the desired linear phase
response for the filterbank and its actual phase response.
We defineDp[h] to be the measure of phase distortion of a
filter h over[0; �],

Dp[h]
4
=
W (!)

�
\H(e

j!
) + �n!

�
p

(6)

for somep, 1 � p � 1, �n 2 Z2, and some weighting
functionW : [0; �] ! [0; 1]. For the generalized coiflets,
�n =

[2�t ]

2
. In fact, the quantityDp[h] is the weightedLp-

distance between the desired linear phase response��n!

and the actual phase response\H(ej!). From (2) we de-
duce that for a CQF pairh andg of a finite support[n1; n2],

\G(e
j!

) = \H(e
j(��!)

)� (n1 + n2)! + �:

Using this relationship, we rewriteDp[h] as

Dp[h] =

fW (!)
�
\G(e

j!
) + �n

0
! + (�n� 1)�

�
p

where�n0 = n1 + n2 � �n, fW is the mirror function ofW
about �

2
, i.e., fW (!) = W (� � !) for ! 2 [0; �], and

��n0! � (�n � 1)� is the desired generalized linear phase
response. Therefore, the quantityDp[h] also measures the
phase distortion ofg with respect to the weighting func-
tion fW . Thus, such a metric is meaningful in not only the



DWT-based applications but also those based on wavelet
packet transforms, where both lowpass and highpass sub-
bands are decomposed iteratively. With this quantitative
measure, which is clearly a function of the parameter�t for
the generalized coiflets, we can formulate a class of opti-
mization problems by searching the optimal parameter�t�

that minimizesDp[hL;�t] for given p andW . Such a gen-
eral formulation allows the flexibility of choosing a proper
parameterp and a proper weighting functionW in order
to provide an appropriate filterbank for a particular DWT-
based application. In the following examples, we choose
p = 1, W (!) = 1 if ! 2 [0; �

2
), andW (!) = 0 else-

where. This implies that we attempt to minimize the maxi-
mum phase distortion over the lowpass halfband.

In Figure 1, we plot the original coiflet and the optimal
generalized coiflet of order 3 as well as their scaling func-
tions, where the subscript “w” stands for WPS. The optimal
generalized coiflet appears more symmetric than the origi-
nal coiflet. The optimal near-HPS filters of the generalized
coiflets with odd orders are quite similar to the filters of
some biorthogonal spline wavelets, which are, in fact, the
dual wavelets with respect to the Haar wavelet, and referred
to as

1;eNeh in Table 6.1 in [1]. In Figure 2, we plot the order-
3 biorthogonal spline wavelet dual to the Haar wavelet and
the order-3 generalized coiflet having the minimal phase
distortion, as well as their scaling functions, where the sub-
script “h” stands for HPS. The two scaling functions are
surprisingly similar to each other; so are the two wavelets.
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Figure 1. Comparison between the 3rd-order
original coiflet and the 3rd-order generalized
coiflet having the minimax phase distortion:
(a) �3;0(t); (b) �3;�t�

w
(t); (c)  3;0(t); (d)  3;�t�

w
(t).
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Figure 2. Comparison between the 3rd-order
biorthogonal spline wavelet dual to the Haar
wavelet and the 3rd-order generalized coiflet
having minimax phase distortion: (a) 1;3

e�(t);
(b) �3;�t�

h

(t); (c) 1;3
e (t); (d)  3;�t�

h

(t).

7. Approximation of Smooth Functions

An important issue in wavelet-based multiresolution ap-
proximation theory is to measure the decay of approxima-
tion error as resolution increases, given some smoothness
conditions on the function being approximated.

Let f be a smoothL2 function in the sense thatf (l) is
square integrable, and� be anlth-order orthonormal scaling
function. DefinePif to be the approximation off at res-
olution2

�i; i.e., the orthogonal projection on the subspace
spanned byf�i;kgk,

(Pif)(t) =

X
k2Z

hf; �i;ki�i;k(t)

=

+1X
q=i+1

X
k2Z

hf;  q;ki q;k(t):

where�i;k(t) = 2
i=2�(2it � k), for i; k 2 Z, and similar

notation applies to .

It can be shown that theL2-norm of the projection error
has the asymptotic form

kf �Pifk2 = Cproj � 2�il � kf (l)k2 + O(2
�i(l+1)

)



where the constantCproj is given by

Cproj =
1

l!

0
@ X

m2Z;m6=0

���b�(l)(2m�)���2
1
A

1=2

:

In the above discussion, the expansion coefficients
fhf; �i;kigk are assumed to be available so that the wavelet
coefficientsfhf;  q;ki : q; k 2 Z; q > ig can be efficiently
computed via Mallat’s algorithm, on which the multiresolu-
tion analysis is based. However, in practice, only the uni-
form samples of a function rather than its expansion coef-
ficients are often known, because the explicit forms of the
function and the scaling function are unknown (this is true
for most wavelet bases), and the computation of expansion
coefficients usually requires the evaluation of numerical in-
tegrals, which are computationally expensive. If a general-
ized coiflet basis is used, then the function samples approx-
imate the expansion coefficients accurately.

We define a sequence of functionsffi;l : R ! R; i 2
Zg,

fi;l(t) = 2
� i

2

X
k2Z

f(2
�i

(k + �t ))�
i;k

l;�t
(t)

which can be viewed as successive approximations off

with the scaled and translated scaling functions of an order-l

generalized coiflet being used as the interpolants.
Theorem:If f : R ! R is (l + 1) times differentiable,

f (l+1) is bounded, andf (l) 2 L2
(R), then theL2-norm of

the reconstruction error has the asymptotic form

kf � fi;lk2 = Cappr � 2�il � kf (l)k2 +O(2
�i(l+1)

)

where the constantCappr is given by

Cappr=
1

l!

2
4Z 1
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(t� k � �t )
l
�l;�t(t� k)

!2

dt

3
5
1=2

:

In [5], we show that for a generalized coiflet, the asymp-
totic constantCappr can be expressed as

C
2

appr = C
2

proj + C
2

samp

where the constantCsampis given by

Csamp=
1

l!

�Z
R

t
l
�l;�t(t) dt� �t

l

�
:

The squaredL2-error for generalized coiflets-based sam-
pling approximation can be represented as

kf � fi;lk22 = kf �Pifk22 + kPif � fi;lk22:

which implies thatkf � fi;lk22, kf � Pifk22, andkPif �
fi;lk22 have the same convergence rate2

�2il. Thus, it is in-
teresting to compare the associated asymptotic constants of
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Figure 3. Asymptotic constants for the sam-
pling approximation errors vs. the sampling
offset �t of the 4th-order generalized coiflet:
(a) C2

samp; (b) C2

appr.

the latter two. The asymptotic constant forkf � Pifk22,
which is the error due to projection, is apparentlyCproj.
Therefore,Csamp is the asymptotic constant forkPif �
fi;lk22, which is the error due to the approximation of the
projection coefficients by the function samples.

In [5], we proposed a numerical method to compute the
asymptotic constants. Figure 3 illustrates the asymptotic
constants for the sampling approximation error versus the
sampling offset�t for the generalized coiflet of orders 4. We
find thatCsamp is much smaller thanCappr. This implies
that theL2-error due to the approximation of the projection
coefficients by the function samples is negligible compared
to that due to the projection, because the two types of errors
have the same convergence rate.

8. Conclusion

We have presented a study of the generalized coiflets.
Since they possess several remarkable properties, they are
excellent candidates of compactly supported orthonormal
wavelet bases in signal processing and numerical analysis.
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