Generalized Coiflets: A New Family of Orthonormal Wavelets
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Abstract ascoifletsare near-symmetric. They have the same number
of vanishing moments for both the scaling functions (cen-
We generalize an existing family of wavelets, coiflets, tered at zero) and the wavelets. In addition, coiflets have
by replacing the zero-centered vanishing moment conditionbeen shown to be excellent for the sampling approximation
on scaling functions by a nonzero-centered one in order to of smooth functions.
obtain a novel class of compactly supported orthonormal  In this paper, we construct a new family of wavelets
wavelets (we call them generalized coiflets). This gener-(we call themgeneralized coifle}sby replacing thezero-
alization offers an additional free parameter, i.e., the cen- centeredvanishing moment condition on the scaling func-
ter of mass of scaling function, which can be tuned to ob- tions of coiflets by anonzero-centeredne. The merit of
tain improved characteristics of the resulting wavelet sys- such a generalization is that it offers one more free parame-
tem such as near-symmetry of the scaling functions andter, i.e., the center of mass of the scaling function (denoted
wavelets, near-linear phase of the filterbanks, and samplingby #), which uniquely characterizes the first several zero-
approximation properties. Therefore, these new waveletscentered moments of scaling functions, and is hence related
are promising in a broad range of applications in signal to the phase response of their FBs at the low frequencies and
processing and numerical analysis. can be tuned to reduce the phase distortion. In addition, by
choosing a propdr, wavelets that are nearly odd-symmetric
are obtained. For a fixetl we apply Newton's method
1. Introduction to construct the lowpass filters associated with the gener-
alized coiflets iteratively. We show that generalized coiflets
In the last decade, the discrete wavelet transform (DWT), &€ asymptotically symmetric and their filters are asymptot-
which is implemented by a multirate filterbank (FB), has ically linear phase as the order tends to infinity. We formu-
been demonstrated to be a powerful tool for a diversity of lat¢ & general framework for minimizing the phase distor-
digital signal processing applications. Among the numeroustion of the lowpass filters under various criteria. We study
wavelets that have been proposed, compactly supported anf'® accuracy of generalized coiflets-based sampling approx-
real-valued wavelets having the orthonormal and perfectimation of smooth functions by developing the convergence
reconstruction (PR) properties have been the most widelyrates forL?-norm of the approximation error. Due to space
used. The associated FBs have finite impulse responsedmitation, we omit all the proofs of our results, which will
(FIR) and real-valued coefficients. In many applications P€ givenin [4] and [5].
(e.g., image processing), one desirable property for FBs is
linear phase, which colrresponds to the symmetry or anti-o Background
symmetry of the associated wavelets and the symmetry of
the associated scaling functions. However, it is well-known
that there does not exist any non-trivial, symmetric scaling  We highlight fundamental results from wavelet theory
function in this family [2]; i.e., in order to obtain symmetric  [2] on which this paper is based. Le{n) be the lowpass
scaling functions, at least one of the above properties hadilter in a two-channel orthonormal wavelet system. The
to be given up. One possible solution to this dilemma is to Scaling functiony() is recursively defined by theilation
construct nearly symmetric scaling functions while main- €quation
taining those useful properties, thereby producing FBs with o(t) = V2 Z h(n) (2t — n) (1)
nearly linear phases. The particular class of wavelets known nez



and the wavelef(t) is defined as
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where the lowpass filtek together with a highpass filter
constitute a pair of conjugate quadrature filters (CQFs); i.e.,

(= (2)

where[ny,n2] is the support of the FIR filters andg. The
orthonormal condition is given by
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for k € Z,whered;, denotes the Kronecker delta symbol.

3. Definition

Definition: A wavelet is called ggeneralized coiflet of
order! (denoted by, ;) if for somet € R, the wavelet),
and its scaling function (denoted by ) satisfy

/ (t— DY oue(t) dt = 6,
R

/ P4y 7(t) dt = 0
R

forp=0,1,...,01— 1.

Note thatt is the center of mass of the scaling function
¢z Whent = 0, the generalized coiflets reduce to the orig-
inal coiflets constructed by Daubechies [3]. The vanishing
moment conditions in the above definition are equivalent to
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forp=0,1,...,1— 1.

4. Construction

It was shown that a generalized coiflet system can be
constructed by solving a set of multivariate nonlinear equa-
tions for the filter coefficients [4]. These equations can be
derived from (3), (4), and (5). We apply Newton’s method
to solve them iteratively. Define aN; x 1 vector

A T
hig = [he(=0), by (=1 +1),... b z(N — 1 = 1)]

whereN; = 2[31/2] and the superscript™ denotes ma-
trix transpose. Letf, : RV — RM be a vector-valued
function defined as
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where all the summations are from= —Ilton = N,
Therefore, the equation

fl(hl,t_) = ONl

gives a set ofV, independent equations in (3), (4), and (5),
where0y, denotes the zero vector of lengi¥y. The ap-
proximate solution to this equation in thigh iteration is
denoted byh{ft—. With an initialization ofh?’t—, Newton’s
iteration becomes

—1-1.
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where f; denotes the Gateaux-derivative ff and the op-
erator(-) ! denotes matrix inversion. The initial choice of
h?f is not arbitrary because some choices may cause the
iteration to diverge. In our design, we choose the original
coiflet filter one order lower than the generalized coiflet fil-
ter we aim to construct as the starting solution; i.e.,

o

The iteration stops when the difference betwﬁéﬁ ! and

h, ¢ is small enough (e.g., its norm is smaller than a given
threshold) In our experiments, with such an initialization
scheme, the Newton iteration always converges.
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5. Near-Symmetry and Near-Linear Phase

We use the phase of the Fourier transform of a scaling
function to measure its symmetry.df ; is nearly symmet-

ric, then the phase o@g is close to a linear function of



frequency. The following proposition indicates how good 6. Minimization of Phase Distortion

this approximation is at low frequencies. Due to the low-

pass nature oy ¢, in the frequency domain its energy is From Proposition 2 we know that the filtgr », 7 € Zo,
mostly distributed at low frequencies. Therefoyg; is has nearly zero phase distortion |if| is small enough.

nearly symmetric. However, the phase distortion at the other frequencies can
Proposition 1:If |w] is sufficiently small, then be much larger. The resulting phase response may not be
N satisfactory in many applications that require uniformly in-
Lpi(w) = —tw+Cy, ;- W+ O significant phase distortion over a broad frequency band.

_ The phase response at low frequencies is uniquely char-
where the constarty, , only depends om, 7; the scaling  acterized by the first several moments of the scaling func-
function of a generalized coiflet is asymptotically symmet- tion, and hence by the parameten the case of the gen-

ric, i.e., for each, eralized coiflets. Thus, we attempt to use this parameter to
) - - obtain smaller phase distortion. Though, for dn¢ Z,
Jim Zdyp(w) = —tw. the property of near-zero phase distortion around DC will

be lost, the gain lies in the fact that phase distortion can be
Now we study the phase distortion of the lowpass fil- largely reduced over a broad frequency band. For a given
ters associated with the generalized coiflets. Since the cof € R, we expect that’ H, z(e’) is close to— @w.
efficients of these filters are real-valued, we only consider  While adjusting the parametérmay also improve the
w € [0, 7]. For a lowpass filter, there are two types of sym- near-symmetry of the scaling functien; and the wavelet

metry. If for somen, a filter h satisfiesh(n) = h(27 — n), Yy 7, in this paper we restrict our attention to the phase dis-
then we say thab is whole-point symmetri@VV/PS) about  tortion of the lowpass filteh, 7.

n if n € 7Z, andhalf-point symmetriqHPS) aboutn if Since in a typical DWT-based application the input sig-
(ﬁ-{—%) € 7. In both cases, the phase resporigg(e/+) = nal is convolved with a wavelet filterbank, the phase re-

—nw. If afilter is asymmetric, then its phase distortion can sponse of the output signal is a sum of those of the input

be measured as the deviation of the phase response from gignal and the filterbank. Therefore, the phase distortion

linear function of frequency with some desired slope. on the output signal, which is additive and caused by the
There is a well-known fact [1] regarding the relationship non-linearity of the phase response of the filterbank, can be

between the symmetric type of a waveletand its associ-  viewed as the difference between the desired linear phase

ated lowpass filtek: if his WPS, then) is even-symmetric,  response for the filterbank and its actual phase response.

and vice versa, if is HPS, then) is odd-symmetric, and  We defineD,[h] to be the measure of phase distortion of a

vice versa. It has been observed that the lowpass filters asfilter i over|0, 7],

sociated with the original coiflets are nearly WPS [3]. In

fact, for anith-order original coiflet, its filte, o(e/~) has Dy[h] = |W(w) (LH() +w) | (6)

(I — 1) zeros atv = 0, and hence a flat, near-zero phase in

the neighborhood of DC. In the following proposition, we for somep, 1 < p < oo, i € Z2, and some weighting

show that in generalH; »(e’“) is close to linear phase at functionW : [0,7] — [0,1]. For the generalized coiflets,

p

low frequencies. n = @ In fact, the quantityD,[h] is the weightedL”-
Proposition 2:If |w| is sufficiently small, then distance between the desired linear phase respense
) z Lo and the actual phase responsH (e/*). From (2) we de-
LHyp(e) = —iiw + Cp, , - w' + O(W'?) duce that for a CQF pair andy of a finite supporfny, n,],
where the constardty, . only depends oy 5; the lowpass LG(e7%) = LH(ET9)) = (ny + ny)w + .
filter associated with a generalized coiflet possesses asymp- _ . _ _
totically linear phase, i.e., for eache [0, 7), Using this relationship, we rewrite,[h] as
lhm LHyp(e9%) = —iiw. Dplh] = HW(w) (£G(e?) +n'w + (n — 1)) H
—00 p

Though the above proposition is true for all r@alonly whereii’ = n, + ny — 7, W is the mirror function offV’
integers and half-integers are of interest. Thus, we defineaboutg, e, Ww) = W(r — w) for w € [0,7], and
Z, & {n : 2n € Z}. An advantage of introducing half- —7'w — (n — 1)7 is the desired generalized linear phase
integern is that filters close to HPS can be constructed, response. Therefore, the quanti®y[h] also measures the
which are more useful than WPS filters in many applica- phase distortion of with respect to the weighting func-
tions. tion . Thus, such a metric is meaningful in not only the



DWT-based applications but also those based on wavelet
packet transforms, where both lowpass and highpass sub-
bands are decomposed iteratively. With this quantitative
measure, which is clearly a function of the paramétier

the generalized coiflets, we can formulate a class of opti-
mization problems by searching the optimal parameéter
that minimizesD,[h;, 7] for givenp andW. Such a gen-
eral formulation allows the flexibility of choosing a proper
parametep and a proper weighting functiol” in order

to provide an appropriate filterbank for a particular DWT-
based application. In the following examples, we choose
p=o0, Ww) =1ifw € [0,F), andW(w) = 0 else-
where. This implies that we attempt to minimize the maxi-
mum phase distortion over the lowpass halfband.

In Figure 1, we plot the original coiflet and the optimal
generalized coiflet of order 3 as well as their scaling func-
tions, where the subscript “w” stands for WPS. The optimal
generalized coiflet appears more symmetric than the origi-
nal coiflet. The optimal near-HPS filters of the generalized
coiflets with odd orders are quite similar to the filters of
some biorthogonal spline wavelets, which are, in fact, the
dual wavelets with respect to the Haar wavelet, and referred
toas, ﬁﬁ in Table 6.1in [1]. In Figure 2, we plot the order-

3 biorihogonal spline wavelet dual to the Haar wavelet and
the order-3 generalized coiflet having the minimal phase
distortion, as well as their scaling functions, where the sub-
script “h” stands for HPS. The two scaling functions are
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Figure 2. Comparison between the 3rd-order
biorthogonal spline wavelet dual to the Haar
wavelet and the 3rd-order generalized coiflet
having minimax phase distortion: (a) 1 36(t);

(0) 3,1: (1); (€) 1,39 (1); (d) Wy 5: (1),

surprisingly similar to each other; so are the two wavelets. 7. Approximation of Smooth Functions
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Figure 1. Comparison between the 3rd-order
original coiflet and the 3rd-order generalized
coiflet having the minimax phase distortion:

(@) ¢3,0(t); (0) Psz= (1); (€) ¥3,0(t); (d) g7 ().

An important issue in wavelet-based multiresolution ap-
proximation theory is to measure the decay of approxima-
tion error as resolution increases, given some smoothness
conditions on the function being approximated.

Let f be a smoothL? function in the sense that is
square integrable, anflbe an'th-order orthonormal scaling
function. DefineP; f to be the approximation of at res-
olution27%; i.e., the orthogonal projection on the subspace
spanned by{¢** }4,

(Pf)(t) = D (£, 0"%) o*(t)

kEZ

+oo
= >0 D (furkyerk).

g=i+1 kEZ

wheregi* (t) = 21/2¢(2t — k), for i, k € 7, and similar
notation applies te.

It can be shown that thB*-norm of the projection error
has the asymptotic form

If = Pifll = Coroj 27 - [If V]2 + O *)



where the constartty; is given by
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ASYMPTOTIC CONSTANT

In the above discussion, the expansion coefficients
{{f, #"*)}+ are assumed to be available so that the wavelet
coefficients{{f,y**) : q,k € Z, q¢ > i} can be efficiently
computed via Mallat’s algorithm, on which the multiresolu-
tion analysis is based. However, in practice, only the uni-
form samples of a function rather than its expansion coef-
ficients are often known, because the explicit forms of the
function and the scaling function are unknown (this is true
for most wavelet bases), and the computation of expansion
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Figure 3. Asymptotic constants for the sam-
pling approximation errors vs. the sampling
offset # of the 4th-order generalized coiflet:

(@) CZamp (b) Cappr

coefficients usually requires the evaluation of numerical in-

the latter two. The asymptotic constant fof — P; f]|2,

tegrals, which are computationally expensive. If a general-Which is the error due to projection, is apparentlyo;.
ized coiflet basis is used, then the function samples approx-Therefore,Csamp is the asymptotic constant fdfP; f —

imate the expansion coefficients accurately.
We define a sequence of functiofif; : R — R,i €

7},
)=2" sz

keZ
which can be viewed as successive approximationg of

le k+t)

7t (1)

with the scaled and translated scaling functions of an arder-

generalized coiflet being used as the interpolants.

Theorem:If f: R — Ris (I + 1) times differentiable,
U+ is bounded, ang¥ ¢ L?*(R), then theL?-norm of
the reconstruction error has the asymptotic form

1 = fialle = Cappe- 27" - |f V]| + 0277+

where the constardtyp, is given by
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In [5], we show that for a generalized coiflet, the asymp-

totic constanCyp,r can be expressed as

02

2
¢, proj

2
appr — + Csamp

where the constarifsampis given by

1 _
Csamp= i </ tldn,f(t) dt — tl> .
- R

The squaredL®-error for generalized coiflets-based sam-
pling approximation can be represented as

\f = fidlls = I1f = Piflls + |Pif — fiull3-

which implies that| f — fi[[3, [If — Pif]13, and||P:f —
fi1]|? have the same convergence ratéi. Thus, it is in-

teresting to compare the associated asymptotic constants of

fi1ll3, which is the error due to the approximation of the
projection coefficients by the function samples.

In [5], we proposed a numerical method to compute the
asymptotic constants. Figure 3 illustrates the asymptotic
constants for the sampling approximation error versus the
sampling offset for the generalized coiflet of orders 4. We
find that Csamp is much smaller thaap,. This implies
that theL*-error due to the approximation of the projection
coefficients by the function samples is negligible compared
to that due to the projection, because the two types of errors
have the same convergence rate.

8. Conclusion

We have presented a study of the generalized coiflets.
Since they possess several remarkable properties, they are
excellent candidates of compactly supported orthonormal
wavelet bases in signal processing and numerical analysis.
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