
WETICS i

WETICS

Web-Enabled Texas Instruments
TMS320C30 Simulator

Dogu Arifler, Chi Duong,
Brian L. Evans, and Srikanth Gummadi

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, Texas 78712-1084

October 31, 1997

Contents

ii

Contents
Abstract..5

1. Introduction ..5

2. The Texas Instruments TMS320C30 (C30) Simulator..………………………………………..7

3. Internet Server ...10

4. Applets...11

5. Summary ...14

References..………………………………………………………………………………………….15

Appendix A Advantages of WETICS over TechOnLine .. A-1

Contents

WETICS iii

List of Figures
Figure 1. Two views of the WETICS client-server architecture...9
Figure 2. WETICS in action using a Java enabled browser..7

Contents

iv

List of Tables
1 Validated TMS320C30 Programs ..13

Abstract

Web-Enabled Texas Instruments
TMS320C30 Simulator 5

Web-Enabled Texas Instruments
TMS320C30 Simulator

ABSTRACT
We present a Web-based client-server framework for interactive
simulation and debugging of software for programmable digital signal
processors (DSPs). The framework, which is accessible by any Java-
enabled Web browser, consists of (1) a graphical user interface (in
Java), (2) a multithreaded Internet server (in Java), and (3) a simulator (in
C/C++) for the Texas Instruments TMS320C30 (C30) DSP processor. The
C30 simulator is a standalone application that has been extensively
validated using the C30 DSP Starter Kit board and tools. Based on
feedback from the C30 simulator, the user interface configures itself.
The same user interface can adapt to different simulators and
debuggers. The source code for the framework is portable, extensible,
and freely distributable. Our framework can support Web-based
university education, distance learning, design space exploration, and
software validation, for a wide variety of TI DSP processors and boards.

1. Introduction

Many of today’s electronics products consist of many dedicated,
configurable, and programmable processors that perform a
variety of signal processing, control, and communications
algorithms in real-time. These products include digital cellular
phones, voiceband data modems, compact disc players, disk
drives, and engine control systems. In order to perform design
tradeoffs of candidate architectures and validate designs at the
physical level, companies have to buy and maintain many
different design tools due the heterogeneity in implementation
technologies. Even for a given technology, wide diversity often
exists; e.g., Texas Instrument sells at least nine different
families programmable digital signal processors (DSPs) [1].
Furthermore, fast simulation technology is critical for validating
physical layer descriptions because simulation is often several
orders of magnitude slower than the physical operation of the
system. Designers have to wait for the next annual release of
CAD software to use advances in simulation technology.

Web-based system simulation frameworks offer a solution [2].
In a Web-based framework, a user would connect to one or

Introduction

6

more servers that coordinate access to a variety of design tools
such as fast simulators or interfaces to physical devices. The
framework would save users from having to buy and maintain
the tools and allow them to concentrate resources on finding
hardware/software solutions for the design task at hand.

This report describes a client-server framework to support Web
interfaces for simulating and debugging software on the Texas
Instruments TMS320C30 (C30) processor. The framework,
which is shown in Fig. 1, consists of

• a graphical user interface (GUI) written as Java applets.

• a multithreaded Internet server written as a Java application.

• a C30 simulator, written in C and C++.

The GUI applets communicate with the Internet server over a
TCP/IP socket, and the server communicates with the simulator
using pipes. The server ensures security because the user
cannot directly run, copy, or otherwise access the simulator---
all user requests must go through the server. We have written
and validated the C30 simulator to be instruction, cycle, and bit
accurate. The simulator reports implementation costs.

The significance of our framework is that it is

• configurable--- the GUI customizes its appearance based on
feedback from the DSP simulator or debugger being used;

• portable--- the GUI, server and C30 simulator work across
multiple platforms;

• extensible--- any command-line simulator, debugger, and
simulator can be plugged into it; and

• freely distributable--- all source code has been released by
anonymous FTP.

It can support Web-based university education, distance
learning, design space exploration, and software validation, for
a wide variety of TI DSP processors and boards.

2. The Texas Instruments TMS320C30 (C30) Simulator

WETICS 7

2. The Texas Instruments TMS320C30 (C30) Simulator

In this section, we discuss our standalone C30 simulator which
currently runs on PCs and Unix workstations. We have
validated the C30 simulator using several application programs
and several random programs. We have designed the C30
simulator with a pure command-line interface so that it can be
easily controlled by a parent program such as a Internet server
or a system-level design tool. The initial release (version 0.1) of
the C30 emulator was on April 19, 1997, which to the best of
our knowledge made it the first freely distributable C30
simulator. The most recent release (version 1.0.5) was on
October 31, 1997.

The TMS320C30 processor is a 32-bit floating-point DSP
introduced by Texas Instruments in 1988. It has a modified
Harvard architecture, a multiplier-accumulator, extended
precision accumulator, zero-overhead hardware looping,
special addressing modes, and a four-stage pipeline with
hardware support for interlocking. It uses a non-IEEE floating-
point format, which complicates emulation, and supports integer
arithmetic. It also offers a conventional set of arithmetic logic
unit functions (or, and, xor, etc.).

We wrote and validated a simulator for the TMS320C30
processor. The C30 simulator is instruction, cycle, and bit
accurate, and executes about 40,000 instructions per second
on a 167 MHz UltraSparc II workstation. The C30 simulator
runs on the PC under Windows 95/NT and on more than twelve
different Unix architectures including Solaris and Linux. The
simulator is based on the source code for the C30 DSP Starter
Kit (DSK) disassembler written by Keith Larson in the Texas
Instruments Applications Group and available on the TI Web
site at ftp://www.ti.com/pub/tms320bbs/c3xdskfiles/. The
disassembler has been extensively validated, so it offered a
reliable start for a C30 simulator. In developing the simulator,
we modeled the visible architectural elements such as precision
registers, auxiliary registers, index registers, program counter,
status register, stack pointer, and repeat mode registers. We
implemented the fetch, decode, read, and execute stages of the

2. The Texas Instruments TMS320C30 (C30) Simulator

8

pipeline. We modeled the stages, memory access counters, an
interlock flag, and data passed between stages of the pipeline.

The C30 simulator takes both machine code and hex files as
input. The hex files can be generated using the freely
distributable DSK tools. Our simulator working in conjunction
with the DSK tools provides a zero-cost entry for designers to
use the C30 processor in their designs. The C30 simulator
emulates the four stages of the C30 pipeline [3]. The four
pipeline stages occur simultaneously in a C30 DSP, but they
occur sequentially in the C30 simulator in the following order:
execute, read, decode, and fetch. Pipeline conflicts can occur
from control hazards (e.g., flush the pipeline in a repeat
instruction) or data hazards (e.g., an operand cannot be read
yet). The simulator properly mimics C30 hardware interlocking
[4] in which the processor halts the stage responsible for the
conflict and all stages before it. On the C30, no more than two
cycles are lost during interlocking. If the user has enabled
disassembling of instructions during simulation, then a pipeline
hazard will be reported as a NOP instruction with a comment
describing the source of the interlocking. Detecting interlocking
is crucial in time-critical loops.

We validated the C30 simulator by comparing its behavior with
a C30 DSK board for randomly generated opcodes and
example programs. A test program was loaded into the C30
DSK board and the C30 simulator. We ran the test program for
a few instructions and then generated a random opcode for
both the DSK board and the simulator. We then compare the
values of all CPU registers and report any differences. We have
been able to validate all instructions C30 simulator supports,
which is 90 out of 99 instructions of the C30 instruction set.
The C30 simulator does not support external—pin XF0, XF1—
interlock operations, as well as lopower, maxspeed operations.
All these instructions function well in general cases and for
typical addressing mode sequences. Some assembly programs
were also validated on the C30 simulator. The same programs
were run on both the simulator and the DSK debugger, and the
CPU register values were checked after each cycle. In all the
cases, a complete match was found. A list of some of the
programs is shown in Table 1.

2. The Texas Instruments TMS320C30 (C30) Simulator

WETICS 9

Program Name Program Length
LOOPAIC.HEX 84 words

SCAN.HEX 176 words
DSKSG.HEX 261 words

DSKOSC.HEX 197 words
FIR.HEX 96 words

Table 1. Validated TMS320C30 Programs.

Socket 1 Pipe 1

Socket 2 Pipe 2

Figure 1. Two views of the WETICS client-server architecture.

Client 1 Client 2 Client 3

Server

Emulator 1 Emulator 2 Emulator 3

Client 1 Thread 1

Client 2

 server

Thread 2

Internet Server

10

3. Internet Server

The Internet server acts as a mediator between the graphical
user interface applets and the simulators/debuggers, as shown
in Fig. 1. The server is a multithreaded Java application that
runs continuously on a host machine [5]. When connection
requests are made to the server, a thread is created for each
connection. Each thread runs an instance of the C30 simulator.

The primary challenge in the server program is to maintain
separate communication channels for each client. WETICS
uses TCP connections to handle multiple users. A pair of end-
points (one at the client and the other at the server) identifies a
connection. An end-point is defined as the integer pair (host
address, port). The server program listens for connection
requests continuously at a previously assigned port (4321 in
our case). When a client makes a connection request, it uses
an unused random port for sending and receiving data [6].
Therefore, TCP automatically handles the following two cases:

• Clients from different Internet host addresses. Since every
host has a different Internet address, we will have a different
(host address, port) at the client side for each client.

• Clients using the same Internet host but running multiple user
interfaces. Since TCP assigns an unused port number to each
client, even if the host address is the same, the port number will
be different in the (host address, port) at the client side. Hence,
we will have a unique connection.

When a connection is accepted, we create sockets to enable
communication between the clients and the server over the
network. We also associate input and output stream to the
established socket to send and receive data.

The server program, which creates separate threads for each
connection, also passes the reference to the socket it created
for a particular connection. The created thread, which executes
an simulator or a debugger as a process, is responsible for
identifying the input, output and error streams of the process.

Applets

WETICS 11

The thread chains the input stream of the process to the
socket’s output stream so that the data coming from the user
interface is directed into the simulator/debugger’s input stream.
Similarly, the output and the error streams of the process are
chained to the socket’s input stream so that the results
produced by the simulator/debugger process can be return to
applets to be displayed to the user.

Several security restrictions imposed by Java were overcome
by using the server application. For example, downloading a
user program into the simulator/debugger can be achieved as
follows. The user specifies the location of his/her program as an
URL. The user interface reads the contents of this URL byte by
byte and sends them to the server, which in turn creates a user
file at the host running the server. Then, the server can issue a
load command to the simulator/debugger to load the created
user file. We overcome security issues by limiting the size of
each file and the number of files per user to one.

4. Applets

When a user connects to the Web page

http://anchovy.ece.utexas.edu/~tidesign/wetics/

the applets query the server as to which simulators and
debuggers are available and presents the list to the user. Once
the user selects a simulator or debugger, the applets
interrogate the server to find out what commands the
simulator/debugger supports, and what commands to associate
with the menu commands to display the processor and
simulator state, retrieve help on a command, and step and run
the program. Based on responses from the server, the applets
configure and display the WETICS GUI. We wrote the WETICS
GUI using the Graphic Java Toolkit [7], which provides a set of
abstracted classes on top of the Java AWT Windowing Toolkit.

The initial prototype supports the downloading of files using the
http protocol for use by the simulator. We overcome security
issues by limiting the size of each file and the number of files
per user to one. Since only one user can use the one simulator,
we do not have any open security or privacy issues.

Applets

12

Fig. 2 shows an example of the GUI after it configures itself for
the TMS320C30 simulator. The four windows are entitled
Command Window, Response Window, Previous Registers,
and Current Registers. The Command Window accepts
simulator commands, whereas the other windows only display
output. The visual cue is that the command window has a white
background and the other windows have a gray background.
The icons from left to right are shortcuts for the following
operations: evaluate the commands in the Command Window,
single step the program, report the number of instruction cycles
executed so far, enable debugging (disassembly) of instructions
as they are evaluated, and display the history of commands
given by textual and graphical input. The command menu in the
left column lists the simulator. A user can double click on any of
these commands, and the command will appear in the
Command Window. These commands are retrieved from the
simulator itself via the Internet server.

The two pull-down menus from left to right are File and Help.
The File menu supports Load, Info, and Exit. The File-Load
command allows users to download files to our server from an
HTTP address. Files are downloaded to a userprograms
subdirectory, which users can access using the simulator’s load
command. Files are limited to 308 KB in size, and are deleted
when the user exits the GUI. The File-Info command displays
information about WETICS and the C30 simulator. The File-Exit
command exits the applet. The Help menu offers help on each
of the simulator commands. At the bottom of the GUI, the
Register Values button will display the current register values in
the Current Registers window, and the previous contents of the
Current Registers window will be moved the Previous Registers
window. Any values that have changed since the last time that
the Register Values button has been pressed is shown with an
asterisk * in the Current Registers window. When the Register
Values button is first hit, register values are compared with the
register values when the simulator/debugger first started. Fig. 2
also shows interaction with the TMS320C30 simulator, which is
running the program,

LOAD 1,R0
RPTS 32
ADD 1,R0

Applets

WETICS 13

The Simulator Response window shows the disassembled
instructions as they are executed. The last instruction shown is
ADDI 1,R0 which is the instruction executed when the Single
Step icon was pressed. Before and after the last instruction was
executed, we hit the Register Values button. By comparing
Previous Registers and Current Registers, we notice that
register r0 has changed value from 0x00000003 to 0x00000022.

Figure 2. WETICS in action using a Java enabled browser.

Summary

14

5. Summary

Web-based CAD tools can provide designers instant access to
the latest advances in simulation and synthesis without the
huge maintenance and computation cost associated with
modern CAD tools. In this context, we present a framework for
Web-Enabled Simulation (WETICS) of software for the Texas
Instruments DSPs. The WETICS applets configure themselves
according to feedback from the simulator through the TCP/IP
server. The Java code underlying the applets and TCP/IP
server is portable, and the source code for the TMS320C30
simulators has been ported to Windows and Unix operating
systems. The source code for WETICS is freely distributable
and frequently released.

Adding new simulators and debuggers to the framework is as
simple as adding data about the commands that the simulator
supports. So, new simulators can be easily added to WETICS
without adding any new program code. Clearly, then, WETICS
is a configurable, portable, extensible, freely distributable
framework for Web-enabled simulation of embedded software.

References

WETICS 15

References
[1] "Pocket guide to popular DSP processors and cores."

 Berkeley Design Technology, Inc., Freemont, CA, 1997.

 http://www.bdti.com/pocket/dsp_guide.htm.

[2] "Web-based Electronic Design (WELD) Project."

 http://www.cad.eecs.berkeley.edu/Respep/Reaserch/weld/,

 Directed by Richard A. Newton. Dept. of Electrical Eng. and

 Comp. Sciences, The University of California, Berkeley, CA.

 94720.

[3] Texas Instruments, Inc., Dallas, Texas, TMS320C3x User’s
 Guide, 1994.

[4] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP
 Processor Fundamentals: Architectures and Features.

 Fremont, CA: Berkeley Design Technology, Inc., 1996.

[5] D. Flanagan, Java in a Nutshell. O’Reilly and Associates,

 1996.

[6] C. Comer, Internetworking with TCP/IP. Englewood Cliffs,

 NJ: Prentice-Hall, Inc., 1995.

[7] D. Geary and A. McClellan, Graphic Java. Englewood

 Cliffs, NJ: Prentice-Hall, Inc., 1997.

Appendix A

WETICS A-1

Appendix A
Advantages of WETICS over TechOnLine

WETICS is a valuable complement the on-line access
provided by TechOnLine http://www.techonline.com to two
C30 Evaluation Module (EVM) boards:

• WETICS provides a fast, robust, Java-based Web
interface to C30 tools as compared to a sluggish
command-line telnet interface.

• WETICS allows instant access to the C30 emulator while
TechOnLine users are waiting for their turn to access one
of the two C30 EVM boards.

• WETICS allow users to download programs to our
framework from a Web address instead of forcing the
user to cut and paste code in a Web browser window.

Other Advantages of our framework are that

• It allows any command line simulator or debugger to be
added easily and thus we could give access to more DSP
boards as the need arises

• It provides zero cost entry for companies to develop C30
applications because our freely distributable C30
simulator work seamlessly with the freely distributable
C30 DSK tools developed by TI.

• It is released by FTP with all source code (under the
GNU license) so that it can be easily installed on other
sites and in other Web-based CAD frameworks.

