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Design Space Approach to

Advanced Filter Design
Miroslav D. Lutovac, Dejan V. To�si�c and Brian L. Evans

Abstract|This paper reviews the basic de�nitions of a �l-

ter design. It introduces straightforward procedures to map

the �lter speci�cation into the design space, i.e. a set of

ranges for parameters that we use in the �lter design. We

search this design space for the optimum solution accord-

ing to given criteria, such as minimal Q-factor or minimal

quantization error.

The principal drawback of the classical �lter design is in

returning only one solution, which can be unacceptable for

many practical implementations. We propose a new ap-

proach to the �lter design by using a mixture of symbolic

and numeric computation and discrete non-linear optimiza-

tion. This approach should provide reduced �lter complex-

ity for a desired performance, or better performances for

the required complexity.

I. Introduction

A �lter is a system, that can be used to modify, reshape
or manipulate the frequency spectrum of an analog or dig-
ital signal according to some prescribed requirements.

An electrical �lter may be used to amplify or attenuate
a range of frequency components (sinusoidal signals) or to
reject or isolate one speci�c frequency component. The
applications are numerous: to eliminate signal contamina-
tion such as noise in communication systems, to separate
relevant from irrelevant frequency components, to detect
signals in radios and TV's, to demodulate signals, to ban-
dlimit signals before sampling, to convert sampled signals
into continuous-time signal, to improve quality of audio
equipment, in time-division to frequency-division multiplex
systems, in speech synthesis, in the equalization of trans-
mission lines and cables, in the design of arti�cial cochlesas
[1] in audio, video, speech, voiceband modems, control, in-
strumentation, radio signaling and radar, high de�nition
television, radio modems, seismic modeling, �nancial mod-
eling, weather modeling.

A digital �lter takes an input sequence of numbers and
produces an output sequence of numbers. Usually, the in-
put sequence of numbers are samples of a continuous func-
tion of time; but, it can be any kind of numbers such as
prices from daily stock market, pixels of image, ....

Generally, the purpose of most �lters is to separate the
desired signals from undesired signals or noise. Often, the
descriptions of the signals and noise are given in terms of
their frequency content or the energy of the signals in the
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frequency bands. For this reason, the �lter speci�cations
are usually given in the frequency domain as magnitude
response or by gain or attenuation.

The range of frequencies in which the sinusoidal signals
are rejected is called stopband. The range of frequencies
in which the sinusoidal signals pass with tolerated distor-
tion is called passband. A region between the passband and
stopband, where neither desired nor undesired signals ex-
ist or the spectra of the desired and undesired signals are
overlapped, can be de�ned as a transition region.

In this paper we will consider a �lter with single pass-
band referred to as low-pass �lter. All other types of �lters
(high-pass, bandpass, and bandstop) can be easily obtained
by simple transformation from the low-pass �lter.

Once the �lter requirements are known, the �lter spec-
i�cation can be established, e.g. we specify the passband
and stopband edge frequencies and tolerances. Next, we
proceed with the �lter design.

The design is a set of processes, that starts with the spec-
i�cation, and ends with the implementation of a (product)
�lter prototype. It comprises four general steps, as follows:
1) approximation, 2) realization, 3) study of imperfections,
4) implementation.

The approximation step is the process of generating a
transfer function that satis�es the desired speci�cation.

The realization step is the process of converting the
transfer function of the �lter into a network or a set of
equations.

The study of imperfections investigates the e�ects of ele-

ment imperfections, which determines the highest tolerance
that can be tolerated without violating the speci�cation of
the �lter throughout its working life.

The implementation step is constructing the product
prototype of the �lter in hardware or software. Decisions
to be made involve the type of components and packag-
ing, and the methods to be used for the manufacture, test-
ing, and tuning of the �lter, the data and coe�cient word-
lengths, etc.

Usually, those four design steps are considered sepa-
rately, although they are not independent of each other.
The main goal is to �nd the most economical solution in
short time. Which �lter is better depends on the hardware
used for the implementation. Many di�erent constrains
have to be ful�lled. The �nite word-length e�ects, compo-
nent tolerances, parasitic e�ects, have signi�cant in
uence
on ful�lling the speci�cation. In this case, classical ap-
proaches are not adequate for optimizing both the behavior
(performance) and implementation (complexity and cost).

We propose a new approach to the �lter design by us-
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Fig. 1. Linear Time-invariant System.

ing a mixture of symbolic and numeric computation and
discrete non-linear optimization. Opposite to the conven-
tional approaches, that return only one design and hide
a wealth of alternative �lter designs, the advanced design
techniques (that we introduce) �nd a comprehensive set of
optimal designs to represent the in�nite solution space.

II. Specification and basic definitions

Usually, the �lter speci�cation is given, but in many
cases the designer has to establish the speci�cation by him-
self. This is the most important prerequisite for the �lter
design. Namely, if the speci�cation is too restrictive (e.g.
very low passband and stopband tolerances, narrow tran-
sition region), the �lter may not be feasible.

The special care must be taken in determining the pass-
band and stopband tolerances. For example, if the noise
due to product quantization, or the noise at the output of
an ampli�er, is -60 dB, it will be not reasonable to require
80 dB attenuation in stopband. The generated noise in the
�lter will be much higher than the attenuated undesired
signal.

When down-sampling is performed in a digital �lter, the
lower or higher half of the spectra have to be rejected in
order to prevent aliasing e�ects. In many cases just 20 or
30 dB attenuation in stopband will be su�cient.

The proper selection of the speci�cation must be done
according to the nature of signals (i.e. frequency bands
and the corresponding levels of the desired and undesired
signals or noise) and the available hardware or software
(
oating point or �xed point arithmetic, element tolerances
and parasitic e�ects, etc.).

In this paper we assume that the speci�cation is given.
Next, we examine the feasibility of the practical �lter de-
sign. Finally, if the �lter is not feasible, we propose the
minimum changes in the given speci�cation to make the
�lter design possible.

In practice, there are several ways in presenting speci�-
cations. Usually, designers of analog �lters prefer attenu-
ation or gain expressed in dB, while magnitude tolerances
are more convenient for the designers of digital �lters.

To provide a uni�ed and consistent design we adopt one
form of presenting the speci�cation.

Let us consider a linear time-invariant system (LTS),
with the input sine signal xin(t)

xin(t) = Xm sin(!t + �) (1)

and the output signal yout(t),

yout(t) = Ym sin(!t + �) (2)

as indicated in Fig. 1. With M (!) = Ym=Xm we can
describe the change in magnitude and we call M (!) the
magnitude response; with �(!) = � � � we designate the
change in phase and we call �(!) the phase response; both
quantities are de�ned at the frequency ! = 2�f from the
frequency range of interest. The frequency response of the
system is de�ned as H(!) = M (!)ej�(!) and uniquely de-
scribes both, an analog or a digital �lter.
In other words, H(!) shows how the input signal is trans-

ferred through the system at the speci�c frequency ! rad/s.
From the frequency response we can derive the transfer

function H. In analog �lter theory H = H(s) is in terms
of the complex frequency s = j!. In digital �lter theory
H = H(z) is in terms of z = ej!T , where T designates the
sampling period. H is a rational function of s or z. The
magnitude of the transfer function, H, for real frequencies,
!, is M (!) = jHj.
Several functions are derived from the magnitude re-

sponse and are frequently used in practice. The reciprocal
of the squared magnitude is called the loss function

LF (!) =
1

M2(!)
(3)

We will call the function
p
(LF (!) � 1) the characteris-

tic function

K(!) =

s
1

M2(!)
� 1 (4)

Attenuation (in dB) or loss characteristic is de�ned by

A(!) = 20 log10
1

M (!)
(5)

Gain (in dB) is the negative of attenuation

G(!) = �A(!) = 20 log10M (!) (6)

In this paper we assume that the maximal value of the
magnitude is 1, M (!)jmax = jHjmax = 1. If this is not the
case, the required attenuation or gain can be easily com-
pensated for by multiplying the digital signal by a constant,
or by a frequency independent ampli�er.
In Fig. 2 the magnitude of a low-pass �lter is shown

in terms of frequency. In case of a digital �lter the upper
limit frequency is half the sampling frequency because we
assume that the signal spectrum does not exist at higher
frequencies. In case of an analog �lter, theoretically, no
upper limit frequency exists; however, we can assume that
the practical upper frequency is up to 100 times higher
than the maximal frequency of interest.
The �lter speci�cation can be expressed in several ways.

(1) The magnitude limits, Fig. 2, de�ne the minimum
magnitude in passband, Mp, and the maximum magni-
tude in stopband, Ms. (2) The magnitude tolerances, Fig.
3, specify the maximum magnitude decrease in passband,
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�p = 1 �Mp, and the maximum magnitude in stopband,
�s = Ms. (3) The magnitude ripple tolerance, Fig. 4,
describes the maximummagnitude variation, in passband,
�1, and in stopband, �2. (4) The attenuation limits in dB,
Fig. 5, specify the maximum attenuation in passband, Ap,
and the minimum attenuation in stopband, As. (5) The
gain limits in dB, Fig. 6, specify the minimum gain in
passband, Gp = �Ap, and the maximumgain in stopband,
Gs = �As.

passband stopband

Fp Fs0
0

1
M

Ms

p

M

f

Fig. 2. Magnitude limit speci�cation.

passband stopband
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0

1
1- δ

δs
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M

f

Fig. 3. Magnitude - tolerance speci�cation.

passband stopband
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0

1+

1- δ

δ 2

1

M

f

δ1

Fig. 4. Magnitude ripple speci�cations.

Relations between the speci�cation quantities are sum-
marized in Table 1.
The underlining idea of the design that we propose in

this paper is to map the speci�cation into a new one, ex-

passband stopband

Fp Fs00
A
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p

A, dB

f

Fig. 5. Attenuation limit speci�cation.

passband stopband
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G

Gs

p

G, dB

f

Fig. 6. Gain limit speci�cation.

pressed in terms of the characteristic-function limits, Fig.
7, specifying the maximum value in passband, Kp, and the
minimum value in stopband, Ks. This provides a uni�ed
start for the subsequent design steps.

III. Approximation problem

In this section we consider the approximation step of the
design process.

Let us consider the speci�cation shown in Fig. 7. The
�rst step is to generate an auxiliary function in !, that
is called the approximation function (or approximation),
from which the transfer function meeting the speci�cation
can be derived. Besides several classical approximations

passband stopband

Fp Fs00

K

Ks

p

K

f

Fig. 7. Characteristic function limit speci�cation.
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Table 1. Relations between speci�cation quantities.
magnitude magnitude magnitude characteristic attenuation gain

function dB dB

�p = 1�Mp =
2�1

1+�1
=

�1+
q
1+K2

pq
1+K2

p

= 1�10�Ap=20 = 1�10Gp=20

1��p = Mp =
1��1
1+�1

=
1q

1+K2
p

= 10�Ap=20 = 10Gp=20

�p

2��p
=

1�Mp

1+Mp

= �1 =
�1+

q
1+K2

p

1+
q
1+K2

p

=
1�10�Ap=20
1+10�Ap=20

=
1�10Gp=20

1+10Gp=20

p
�p(2��p)
1��p

=

q
1�M2

p

Mp

=
2
p
�1

1��1
= Kp =

p
1�10�Ap=10
10�Ap=20

=

p
1�10Gp=10

10Gp=20

�20 log10(1��p) = �20 log10Mp = 20 log10
1+�1
1��1

= 10 log10(1+K
2
p ) = Ap = �Gp

20 log10(1��p) = 20 log10Mp = 20 log10
1��1
1+�1

= �10 log10(1+K2
p ) = �Ap = Gp

�s = Ms =
�2

1+�1
=

1p
1+K2

s

= 10�As=20 = 10Gs=20

2�s
2��p

=
2Ms

1+Mp

= �2 = 2

s
1+K2

p

1+K2
s

1+
q
1+K2

p

= 2
10�As=20

1+10�Ap=20
= 2

10Gp=20

1+10Gp=20p
1��2s
�s

=

p
1�M2

s

Ms

=

p
(1 + �1)2��22

�2
= Ks =

p
1�10�As=10
10�As=20

=

p
1�10Gs=10

10Gs=20

�20 log10(�s) = �20 log10Ms = �20 log10
�2

1+�1
= 10 log10(1+K

2
s ) = As = �Gs

20 log10(�s) = 20 log10Ms = 20 log10
�2

1+�1
= �10 log10(1+K2

s ) = �As = Gs

�p = 1�
p
2

2
Mp =

p
2

2
Kp = 1 Ap � 3 Gp � �3

�s � 0:1 Ms � 0:1 Ks = 10 As � 20 Gs � �20
�s � 0:01 Ms � 0:01 Ks = 102 As � 40 Gs � �40
�s � 0:0001 Ms � 0:0001 Ks = 104 As � 80 Gs � �80
�s�0:00001 Ms�0:00001 Ks = 105 As � 100 Gs � �100
�p�0:005 Mp�0:995 �1 � 0:0099 Kp = 1=10 Ap�0:043 Gp��0:043
�p�0:00005 Mp�0:99995 �1�0:00001 Kp = 1=100 Ap�0:0004 Gp��0:0004

there are numerous closed form expressions and numerical
procedures for generating approximation functions.

The magnitude response of a lowpass Butterworth �lter
is smooth and monotonically decreases with respect to fre-
quency. It is maximally 
at at ! = 0.

The Chebyshev �lter, sometimes called Chebyshev type
I �lter, gives the smallest magnitude error over the entire
passband. The magnitude response of the stopband mono-
tonically decreases with respect to frequency.

The Butterworth and Chebyshev type I �lters are allpole
�lters. They have no magnitude zeros.

The magnitude response of the Chebyshev type II �lter,
called also Inverse Chebyshev �lter, is smooth and mono-
tonically decreases with respect to frequency in the pass-

band. It is maximally 
at at ! = 0 like the Butterworth
�lter. This �lter gives the smallest magnitude error over
the entire stopband.

The elliptic function �lter, sometimes called elliptic,
Cauer or Darlington �lter, gives the smallest magnitude
error over the entire passband and stopband.

The Bessel �lter is an allpole �lter like Butterworth and
Chebyshev type I �lters. Its magnitude response is smooth
and monotonically decreases with respect to frequency.
The main characteristics of this �lter are that group delay
is maximally 
at at ! = 0 and the step response overshoot
is low.

Other types of �lters exist, and exhibit good properties
of group delay or in time domain [2]. There are also tran-
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sitional approximations extensively published in open lit-
erature.
In digital �lter theory there are additional approaches

for solving the approximation problem (least square error
method, windows approach) [3].
Which approximation should the designer choose?
One approach is to analyze all known approximations

and to use all known procedures for calculating the magni-
tude function. The examination of all known approxima-
tions has a very high computational cost. Such an approach
can be time consuming, too.
One straightforward approach is to specify a desired

magnitude response and to try to �nd, numerically, an
approximation closest to the response [3]. We also must
add some constraints that are required by the numerical
optimizer; the purpose of the additional constraints is just
to simplify the design procedure. The numerical approach
gives only one solution and we do not known whether a
better solution exists.
It is interesting to notice [3] that good approximations

are obtained by specifying some constraints in the tran-
sition region, which we normally treat as a \don't care"
region.
In this paper we focus on only one approximation, the

elliptic approximation, next, we �nd the design space, i.e.
the range of design parameters that satisfy the speci�ca-
tion, and keep the design parameters as symbols.

IV. Design space

In this section we de�ne the design space. First, we map
the speci�cation into a standard form; next, we identify
the design parameters; �nally, we calculate the limits of
the design parameters.
In the previous section we have shown several ways of

presenting required speci�cations. Any low-pass �lter can
be speci�ed by a set of four quantities as follows:

S� = fFp; Fs; �p; �sg (7)

SM = fFp; Fs;Mp;Msg (8)

Sr = fFp; Fs; �1; �2g (9)

SK = fFp; Fs;Kp;Ksg (10)

SA = fFp; Fs; Ap; Asg (11)

SG = fFp; Fs; Gp; Gsg (12)

The relations between them have been summarized in Ta-
ble 1. The symbols Fp and Fs designate the passband edge
frequency and the stopband edge frequency, respectively,
in Hz.
It is more convenient to transform a given speci�cation

S into the speci�cation SK because it provides a clearer
relationship between the design parameters and the speci-
�cation. In fact, we have to �nd a characteristic function
K(!).
There is an in�nite number of characteristic functions

that �t S. We will consider the elliptic-function approxi-

mation, because it ful�lls the requirements with the mini-
mal transfer function order. The minimal order can lead to

the most economical solution (the minimal number of com-
ponents, the minimal number of multiplications). Also, it
will be shown that some other classical approximations are
special cases of the elliptic approximating function.
The prototype elliptic approximation, Ke, is an nth-order

rational function in real variable x

Ke(x) = �jR(n; a; x)j (13)

where R, referred to as the rational elliptic function, satis-
�es the conditions

0 � jR(n; a; x)j � 1; jxj � 1 (14)

and
L(n; a) � jR(n; a; x)j; jxj � a (15)

L is the minimal value of the magnitude of R for jxj � a

and can be calculated as

L(n; a) = jR(n; a; a)j (16)

The normalized transition band 1 < x < a is de�ned by

1 < jR(n; a; x)j< L(n; a); 1 < jxj < a (17)

The parameter a is called the selectivity factor.

passband stopband

Fp Fs00

Kp

Ks

L

ε

K

f

ε

fp fs

Fig. 8. Characteristic function.

passband stopband

Fp Fs00

Kp

Ks

L

ε

K

x

ε

1 a
fp fp
__ __

Fig. 9. Normalized characteristic function.

The parameter � determines the maximal variation ofKe

in the normalized passband 0 � x � 1

0 � Ke(x) � �; jxj � 1 (18)
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and is called the ripple factor.
The elliptic approximation, K, is a rational function in

frequency ! rad/s, Figs. 8, 9,

K(!) = Ke(x); x =
!

2�fp
(19)

where fp represents a design parameter that we call the
actual passband edge. Traditionally, it has been set to fp =
Fp.
The four quantities, n, a, �, and fp, are collectively re-

ferred to as design parameters and can be expressed as a
list of the form

D = fn; a; �; fpg (20)

Each of the listed parameters can take a value from a con-
tinuous (a,�,fp) or discrete (n) range of numbers. The order
n is also referred to as the �lter order.
It is known [3] that the ordinary elliptic function provides

the minimal order, nmin = nellip, for a given speci�cation.
The maximal order, from the practical viewpoint, can be
assumed to be nmax = 2nmin.
The selectivity factor, a, falls within the limits which are

found by solving the equations [4]

R(n; a; a) =
Ks

Kp

! amin = amin(n) (21)

R

�
n; a;

Fs

Fp

�
=

Ks

Kp

; a >
Fs

Fp
! amax = amax(n) (22)

It follows from Eqs. (13) and (14) that the maximal
value of � must be equal to or less than Kp

� � Kp (23)

The ripple factor quanti�es the output signal amplitude,
Ym, with respect to the input signal amplitude,Xm. When
K(!) = 0, both amplitudes have the same values, i.e.

Ym = Xm; for K(!) = 0 (24)

with K(!) = � the amplitudes are di�erent:

Ym =
Xmp
1 + �2

; for K(!) = � (25)

From the previous equations it follows that the smaller
�, the smaller the di�erence between the input and output
amplitude.
What is the lower limit of �?
The ripple factor, for x > a, mustmeet another condition

Ke(x) � Ks, Fig. 9, thus

�L(n; a) � Ks (26)

Therefore, the maximal and minimal values of � has to be
determined

�min � � � �max (27)

From Eq. (23) we �nd the upper bound

�max = Kp (28)

From Eq. (26) we determine the lower bound

�min =
Ks

L(n; a)
= �min(n; a) (29)

The maximal value of � directly follows from speci�cation,
while the minimal value of � depends on the order n and
the selectivity factor a.
The actual passband edge, fp, can take a value from the

interval

fp;min =
Fs

amax

� fp �
Fs

amin

= fp;max (30)

Obviously, fp;min = fp;min(n), and fp;max = fp;max(n).
The set of all quartets D = fn; a; �; fpg, satisfying the

constraints fnmin � n � nmax, amin � a � amax, �min �
� � �max, fp;min � fp � fp;maxg, we call the design space.

DS = fDS;ngn=nmin;nmin+1;:::;nmax
(31)

DS;n =

8>><
>>:

n

amin(n) � a � amax(n)
�min(n; a) � � � �max

fp;min(n) � fp � fp;max(n)g
(32)

The order n is an integer, it takes only the discrete numeric
values, so, it is more convenient to express the design space,
DS , as a list of subspaces, DS;n.

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

8>><
>>:

n = nmin

amin(n) � a � amax(n)
�min(n; a) � � � �max

fp;min(n) � fp � fp;max(n)8>><
>>:

n = nmin + 1
amin(n) � a � amax(n)
�min(n; a) � � � �max

fp;min(n) � fp � fp;max(n)
:::8>><
>>:

n = nmax

amin(n) � a � amax(n)
�min(n; a) � � � �max

fp;min(n) � fp � fp;max(n)

(33)
where

�min(n) > �min(n+ 1) > 0
amin(n) > amin(n+ 1) > 1
amax(n) < amax(n+ 1) < +1

(34)

V. Basic design alternatives

This section lists a comprehensive set of design alterna-
tives based on the design space. It is understood that the
rational elliptic function can be readily constructed for a
given set of design parameters [5], [6]. The advantages of
the various designs are discussed.
Usually the designer selects the minimal order n = nmin.

The design alternatives that follow are general and valid for
any n from the design space. We assume that a speci�ca-
tion, S, has been mapped to the form SK .
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A. Design D1

This design sets the three design parameters, a = Fs=Fp,
� = Kp, fp = Fp, directly from the speci�cation, Fig. 10.

passband stopband

00
=Kp

Ks

L

ε

K

f

ε

fp=Fp fs=Fs

Fig. 10. Design D1.

The design D1 has higher attenuation in the stopband
than it is required by SA. We will choose this design when
we prefer to achieve as large attenuation as possible in the
stopband, i.e. �L > Ks.

B. Design D2

This design sets the two design parameters, a = Fs=Fp,
fp = Fp, directly from the speci�cation, Fig. 11. The
ripple factor is computed from � = Ks=L(n; a).

passband stopband

00

Kp

L = Ks

ε

K

f

ε

fp=Fp fs=Fs

Fig. 11. Design D2.

The design D2 has lower attenuation in the passband
than it is required by SA. We will choose this design when
we prefer to achieve as low attenuation as possible in the
passband, i.e. � < Kp. Also, this design is suitable when
�lter element imperfections can signi�cantly change the
magnitude in the passband; in that case, we achieve the
highest attenuation margin in the passband (the margin is
Kp � �, Fig. 11), and we expect that the imperfections of
the implemented �lter will not violate the speci�cation.

C. Design D3a

In this design we choose the minimal selectivity factor,
a = amin, and set the two design parameters, � = Kp,
fp = Fp, directly from the speci�cation, Fig. 12.

passband stopband

Fs00
=Kp

L = Ks

ε

K

f

ε

fp=Fp fs

Fig. 12. Design D3a.

The design D3a has the sharpest magnitude response.
When undesired signals exist in the transition region we
prefer design D3a, because it rejects the undesired signals
as much as possible.

Disadvantages of D3a can be very high Q-factors and
large variation of the group-delay in the passband.

D. Design D3b

For this design we choose the minimal selectivity factor,
a = amin, (the same as in Design 3a) and set the ripple
factor, � = Kp, directly from the speci�cation, Fig. 13.
The actual passband edge is computed from fp = fp;max =
Fs=a.

passband stopband

Fp00
=Kp

L = Ks

ε

K

f

ε

fp fs=Fs

Fig. 13. Design D3b.

The design D3b has the sharpest magnitude response
(the same as D3a). When the desired signals exist in the
transition region we prefer the design D3b, because it at-
tenuates the desired signals as low as possible.

A disadvantage of the design D3b can be very high Q-
factors. Although the variation of the group-delay can be
high, its maximal value can be moved into the transition
region, so, the group-delay variation can be acceptable in
the passband.

E. Design D4a

In this design we choose the maximal selectivity factor,
a = amax, and set the two design parameters, � = Kp,
fp = Fp, directly from the speci�cation, Fig. 14.
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passband stopband

Fs00
=Kp

Ks

L

ε

K

f

ε

fp=Fp fs

Fig. 14. Design D4a.

The design D4a (like the design D1) has higher attenu-
ation in the stopband than it is required by SA, except at
the stopband edge frequency. We choose this design when
we prefer to achieve as large attenuation as possible in the
stopband, i.e. �L > Ks, except at f = Fs.
The design D4a has a smoother magnitude response, and

that is the main reason for lower Q-factors and smaller
variation of the group-delay in the passband.

F. Design D4b

For this design we choose the maximal selectivity factor,
a = amax, (the same as in the design D4a), Fig. 15, and
calculate the ripple factor from � = Ks=L(n; a). The actual
passband edge is computed from fp = fp;min = Fs=a.

passband stopband

Fp00

Kp

L = Ks

ε

K

f

ε

fp fs=Fs

Fig. 15. Design D4b.

The design D4b (like the design D2) has lower attenua-
tion in the passband than it is required by SA, except at
the passband edge frequency.
We choose this design when we prefer to achieve as low

attenuation as possible in the passband, i.e. � < Kp, except
at f = Fp.
The design D4b has a smoother magnitude response.

This design usually yields very low Q-factors and small
variation of the group-delay in the passband. The design
D4b has the lowest ripple factor �.
It should be noticed that there exists a straightforward

procedure for computing the ripple factor, �, for a given
selectivity factor a, that yields the minimal Q-factors [7].
We call this design D5.

A disadvantage of D4b (also, D3a, D3b, D4a) is lack
of any attenuation margin. Any imperfection, usually in
implementation step (like element tolerances or coe�cient
quantization), can violate the speci�cation.

G. Remarks on the design alternatives

The approach that we propose in the previous sections
we have programmed in Mathematica [10]. Several design
examples are exercised for an illustrative speci�cation: SA
= fFp = 3kHz; Fs = 3:225kHz, Ap = 0:2dB; As = 40dBg.
First, SA = f3; 3:225; 0:2; 40g is transformed into

SK = f3; 3:225; 0:2171;100g. Next, all designs are calcu-
lated, and the attenuations are plotted, Figs. 16 - 31. The
design parameters, the actual stopband edge, the maximal
attenuation in the passband, and the minimal attenuation
in the stopband, are summarized in Tables 2 and 3. The
maximal Q-factor is presented in the last column.

If technological requirements impose a maximal value of
Q-factors, e.g. Qmax = 20 for active RC �lters, Table 1
reveals than all six design alternatives fail. The design
D4b is the best suboptimal solution.

An advanced design technique, the design D5 [7] with
doubled poles [12], achieves the maximum Q-factor lower
than 20. This is paid by increasing the �lter order; the
actual �lter order is 12, that is much higher than the min-
imal order n = 8. Although the �lter order has been in-
creased, the implementation can be more cost e�ective [8]
[9]; the lower tolerance components can be used and the
magnitude response of the implemented �lter satis�es the
speci�cations [8].

We can enlarge the design space by increasing the �lter
order from n = 8 to n = 9. The corresponding attenuations
are plotted on Figs. 26 - 31 and the design results are
summarized in Table 3. The Q-factor of the design D4b
is 20.9 that is very close to the required maximal value
(Q = 20).

In practice, we choose the most suitable design, D,
from the determined design space DS . Thus, we can try
to meet various technological requirements (maximal Q-
factors, maximal element tolerances, prescribed values of
coe�cients of digital IIR �lter [11] [13]), and advanced
speci�cations (maximal group delay variation, maximal rise
time, maximal overshoot in step response, maximal settling
time).

It should be noticed that the design parameters of the
design D5 belong to the design space DS ; D5 and its mod-
i�cation D5a [7] yield, also, elliptic function �lters. By fur-
ther increasing the �lter order, we arrive at the Chebyshev
type approximation, for n = nC ; the design D4a degener-
ates from rational into polynomial (allpole) �lter. Alterna-
tively, for the same order, n = nC , the design D4b yields
an Inverse Chebyshev type �lter. When the �lter order is
equal to the order of the Butterworth type �lter, the de-
sign D5 transforms into an allpole Butterworth type �lter.
This means that the classical �lter types, Chebyshev, In-
verse Chebyshev and Butterworth, are just special cases of
the elliptic function �lters, and are contained within the
design space DS .



9

0.5 1 1.5 2 2.5 3
f (kHz)

-0.15

-0.1

-0.05

0

A (dB)

3.05 3.1 3.15 3.2
f (kHz)

-30

-20

-10

0

A (dB)

4 6 8 10 12 14 16
f (kHz)

-100

-60

-40

A (dB)

Fig. 16. Design 1: D = fnmin; Fs=Fp; �max; Fpg for SA = fFp = 3kHz; Fs = 3:225kHz; Ap = 0:2dB;As = 40dBg

Table 2. Design summary for n = nmin.
Design n a � fp (kHz) fs (kHz) ap (dB) as (dB) Qmax

D 1 8 1.075 0.2171 3. 3.225 0.2 47.55 29.92
D 2 8 1.075 0.09097 3. 3.225 0.03579 40. 24.24
D 3a 8 1.043 0.2171 3. 3.129 0.2 40. 42.12
D 3b 8 1.043 0.2171 3.092 3.225 0.2 40. 42.12
D 4a 8 1.083 0.2171 3. 3.25 0.2 49.14 28.18
D 4b 8 1.083 0.07579 2.977 3.225 0.02487 40. 22.07
D 5 11 1.075 0.006257 3. 3.225 0.00017 44.07 31.36
D 5a 10 1.079 0.01 2.989 3.225 0.0004343 40. 27.27
D 5 2� 6 = 12 1.075 0.08607 3. 3.225 0.06411 42.67 15.95

Table 3. Design summary for n = nmin + 1.
Design n a � fp (kHz) fs (kHz) ap (dB) as (dB) Qmax

D 1 9 1.075 0.2171 3. 3.225 0.2 56.66 37.36
D 2 9 1.075 0.03188 3. 3.225 0.004412 40. 25.76
D 3a 9 1.022 0.2171 3. 3.066 0.2 40. 81.2
D 3b 9 1.022 0.2171 3.156 3.225 0.2 40. 81.2
D 4a 9 1.098 0.2171 3. 3.294 0.2 61.4 32.14
D 4b 9 1.098 0.01847 2.937 3.225 0.001481 40. 20.87
D 5 12 1.075 0.006257 3. 3.225 0.00017 44.07 34.67
D 5a 10 1.079 0.01 2.989 3.225 0.0004343 40. 27.27
D 5 2� 6 = 12 1.075 0.08607 3. 3.225 0.06411 42.67 15.95

VI. Conclusion

Opposite to the conventional approaches, that return
only one design and hide a wealth of alternative �lter de-
signs, the advanced design techniques that we present in
this paper �nd a comprehensive set of optimal designs to
represent the in�nite solution space.

The primary bene�t of this paper is convenient access to
the latest advances in algorithms for analog and digital IIR
�lter design. These advanced techniques can design many
types of �lters that conventional techniques cannot design.
A secondary bene�t is a collection of case studies for �lter
designs that are suitable for non experienced designers.
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Fig. 17. Design 2: D = fnmin; Fs=Fp; � < �max; Fpg for SA = fFp = 3kHz; Fs = 3:225kHz;Ap = 0:2dB; As = 40dBg
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Fig. 18. Design 3a: D = fnmin; amin; �max; Fpg for SA = fFp = 3kHz; Fs = 3:225kHz; Ap = 0:2dB; As = 40dBg
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Fig. 19. Design 3b: D = fnmin; amin; �max; Fs=a;g for SA = fFp = 3kHz; Fs = 3:225kHz;Ap = 0:2dB;As = 40dBg
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Fig. 20. Design 4a: D = fnmin; amax; �max; Fp; g for SA = fFp = 3kHz; Fs = 3:225kHz; Ap = 0:2dB; As = 40dBg
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Fig. 21. Design 4b: D = fnmin; amax; �min; Fs=a;g for SA = fFp = 3kHz; Fs = 3:225kHz;Ap = 0:2dB;As = 40dBg
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Fig. 22. Design 5: D = fn > nmin; Fs=Fp; � << �max; Fpg for SA = fFp = 3kHz; Fs = 3:225kHz; Ap = 0:2dB; As = 40dBg

0.5 1 1.5 2 2.5 3
f (kHz)

-0.15

-0.1

-0.05

0

A (dB)

3.05 3.1 3.15 3.2
f (kHz)

-30

-20

-10

0

A (dB)

4 6 8 10 12 14 16
f (kHz)

-100
-90

-70
-60
-50
-40

A (dB)

Fig. 23. Design 5a: D = fn > nmin; a > Fs=Fp; � << �max; Fs=ag for SA = fFp = 3kHz; Fs = 3:225kHz;Ap = 0:2dB;As = 40dBg
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Fig. 24. Design 5: D = fn > nmin; Fs=Fp; �max ; Fpg for SA = fFp = 3kHz; Fs = 3:225kHz; Ap = 0:1dB; As = 20dBg
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Fig. 25. Design D = f2� 5; Fs=Fp; �max; Fpg for SA = fFp = 3kHz; Fs = 3:225kHz; Ap = 0:2dB; As = 40dBg
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Fig. 26. Design 1: D = fnmin + 1; Fs=Fp; �max ; Fpg for SA = fFp = 3kHz; Fs = 3:225kHz; Ap = 0:2dB; As = 40dBg
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Fig. 27. Design 2: D = fnmin + 1; Fs=Fp; � < �max; Fpg for SA = fFp = 3kHz; Fs = 3:225kHz; Ap = 0:2dB;As = 40dBg

0.5 1 1.5 2 2.5 3
f (kHz)

-0.15

-0.1

-0.05

0

A (dB)

3.05 3.1 3.15 3.2
f (kHz)

-80

-60

-20

0

A (dB)

4 6 8 10 12 14 16
f (kHz)

-70

-60

-50

-40

A (dB)

Fig. 28. Design 3a: D = fnmin + 1; amin; �max; Fpg for SA = fFp = 3kHz; Fs = 3:225kHz;Ap = 0:2dB;As = 40dBg
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Fig. 29. Design 3b: D = fnmin + 1; amin; �max; Fs=ag for SA = fFp = 3kHz; Fs = 3:225kHz; Ap = 0:2dB; As = 40dBg

0.5 1 1.5 2 2.5 3
f (kHz)

-0.15

-0.1

-0.05

0

A (dB)

3.05 3.1 3.15 3.2
f (kHz)

-30

-20

-10

0

A (dB)

4 6 8 10 12 14 16
f (kHz)

-110
-100
-90

-70
-60
-50
-40

A (dB)

Fig. 30. Design 4a: D = fnmin + 1; amax; �max; Fpg for SA = fFp = 3kHz; Fs = 3:225kHz;Ap = 0:2dB;As = 40dBg
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Fig. 31. Design 4b: D = fnmin + 1; amax; �min; Fs=ag for SA = fFp = 3kHz; Fs = 3:225kHz; Ap = 0:2dB; As = 40dBg


