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Abstract| This paper focuses on symbolic derivation

of system and noise transfer functions and symbolic syn-

thesis of programmable digital �lters. A new symbolic

approach is presented to obtain robust and cost-e�ective

realizations not available by classical digital �lter design.

The advantages of the new approach are discussed.

I. Introduction

The major goal of this paper is to introduce symbolic

analysis of digital �lters implemented by means of pro-

grammable logic devices. Symbolic analysis is intended

to complement a more general hardware description lan-

guage (HDL) and to shorten the design process.

If time-to-market is critical and a low volume custom

applications are required, then, recon�gurable devices

are preferred. The goal is to reduce the hardware com-

plexity and to design robust cost-e�ective �lters. This

can be accomplished by using programmable logic de-

vices and nonstandard lengths of multiplier coe�cients.

For given �lter speci�cations all possible realizations

are analyzed and the optimal solution is selected to

meet the design constraints. In order to �nd the op-

timal realization a great number of di�erent structures

must be analyzed and evaluated. Usually, the designer

is discouraged to examine all the available solutions,

because of the high computational cost. For example,

for a �fth-order transfer function with two complex pole

pairs and one real pole, there are altogether 2304 equiv-

alent realizations, made out of only two types of allpass

structures, all exhibiting very low passband sensitivity

[1], [2]. The number of realizations dramatically in-

creases (more than 10,000 realizations) if some other

low-sensitive structures [3], [4], [5] are taken into ac-

count.

The symbolic approach to the digital �lter design in-

herently keeps all existing symbolic relations between

the speci�cations and the design variables. It provides

a straightforward procedure for the optimal �lter de-

sign [6] which is not possible with classical numerical

procedures.
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In this paper we consider a part of a new general

symbolic design methodology that provides a systematic

automated procedure for classi�cation and veri�cation

of di�erent realizations.

Usually, �lter realizations are presented in the form

of the block-diagram or 
ow-chart that consists of the

standard elements: adders, delays and multipliers. The

existing procedures ("manual" or numeric) for deriv-

ing the noise transfer functions and transfer matrices

require several modi�cations in the block-diagram (at

the output of the multiplier an additional adder and a

noise source are inserted). Such a concept unnecessary

complicates the analysis and is not appropriate for the

automated design and analysis. In order to �nd all the

required transfer functions, without any modi�cation

of the block-diagram, a new multiplier model is intro-

duced [7]. This model enables symbolic deriving of the

required functions in only one analysis.

The proposed approach is used for testing published

realizations in order to verify the reported results, and

to safely identify and possibly correct typesetting errors,

frequently encountered in open literature. An example

from [3] is re-analyzed in this paper; it is shown that the

realization of Fig. 7a does not match the reported sys-

tem transfer function and the noise transfer functions.

The symbolic analysis �nds out the missing "-" sign at

the input of the �rst adder of the block-diagram. Next,

it derives the correct noise transfer functions and, �-

nally, veri�es the reported expressions for the variance

of quantization noise due to rounding the outputs of

multipliers.

II. Why symbolic analysis in the design of

digital filters?

A digital �lter design starts from a given �lter spec-

i�cation, analyzes possible realizations, and selects the

optimal solution meeting the design constraints. In or-

der to �nd the optimal realization a great number of

di�erent structures must be analyzed and evaluated.

Usually, the designer is discouraged to examine all the

available solutions, because of the high computational

cost. For example, for a �fth-order transfer function

with two complex pole pairs and one real pole, there

are altogether 14,400 equivalent realizations, made out

of only three types of allpass structures, all exhibiting

very low pass-band sensitivity [1]-[5].

The number of realizations is calculated as in [1]:



the �fth-order transfer function is decomposed into one

�rst-order and two second-order sections. This �lter

can be realized as a parallel connection of one second-

order allpass section and one cascaded connection of

a �rst-order and a second-order allpass sections. The

�rst-order allpass transfer function can be realized in 4

di�erent ways, and are designated as type 1 [1]. The

second-order function can be realized as 16 allpass �l-

ters of type 2, 8 allpass �lters of type 3 [1] or 36 �lters

of type 4 [8]. The number of possible realization of

a second-order allpass section is (16+8+36)=24. The

second-order section in one parallel branch can be re-

alized in 24 di�erent ways, and the same holds for the

other branch. Therefore, for the two second-order sec-

tions, 242 realizations exist. The overall number of pos-

sible realizations is 242�4 due to the 4 existing solutions

of the �rst-order allpass sections.

It was reported [6] that higher-order �lters are more

appropriate for cost-e�ective realizations (for example

the 9th-order �lter is realized with fewer multipliers

than the 5th-order �lter). In case of the 7th-order �lter

there are 243�4 = 864,000 realizations with three types

of second-order sections and one �rst-order section. The

number of possible 9th-order �lter realizations is 244�4

= 51,840,000. Without a systematic approach it is prac-

tically impossible to �nd the optimal solution.

The above enumerating of possible realizations was

made on the assumption that we know the numerical

values of coe�cients of the transfer function. On the

contrary, there is an in�nite number of transfer func-

tions that satisfy required speci�cations. If we take

into account other realizations (cascade, parallel, lat-

tice, etc.) the number of �lters to be examined in-

creases. The in�nite number of transfer functions and

the large number of realizations are the main reasons

for an extremely high computational cost.

So far, the traditional numerically-oriented design

process could not �nd a robust and cost-e�ective so-

lution in the straightforward manner. One possible al-

ternative is to introduce symbolic computation.

The symbolic approach to the digital �lter design in-

herently keeps all existing relations between the speci�-

cations and the design variables in a closed form. It pro-

vides a straightforward procedure for the optimal �lter

design [6] which is not possible with classical numerical

procedures.

III. Programmable digital filters

We de�ne the Programmable Digital Filter (PDF) as

hardware or software implementation of a digital �lter

whose properties are programmable by external control

signals.

Let us consider a digital �lter realized as a parallel

connection of two allpass sections [1]. The output of

the two branches are the inputs to an adder. The adder

can sum or subtract the input signals. We can obtain

Fig. 1. Realization of allpass section

a low-pass �lter by summing the input signals, or a

high-pass �lter by subtracting them. Therefore, the two

quite di�erent �lters can be realized by single hardware

and one control signal. The control signal selects the

sum/subtract function of the adder.

Another kind of programmable �lters has pro-

grammable sign at the adder inputs, but the system

transfer function does not depend on the control sig-

nals. The adder sign pattern e�ects the noise transfer

functions only. This means that without changing the

con�guration of the implemented �lter we can select

(by the control signals) among di�erent noise transfer

functions for the same system transfer function. The �l-

ter characteristics remain the same for all realizations,

while the noise due to product quantization varies.

In hardware implementation, the proper selection of

the noise transfer function means that the wordlength

is shorter, and, therefore, the hardware is less complex.

If the goal is to minimize the product-quantization

noise, then, we can use the same implementation, adjust

the control signals, and optimize the �lter without any

hardware modi�cation.

IV. Symbolic filter synthesis

In this paper, we de�ne symbolic synthesis of a digital

�lter as a process of converting the transfer function

into a discrete system or software, keeping some or all

coe�cients as symbols (not numbers). We introduce a



new symbolic adder which takes into account the sum

and the subtract functionality. The adder output (Y )

is a weighted sum of its inputs (X1 and X2) of the form

Y = cX1 + dX2, where the symbolic weights c and d

represent the values +1 or �1.

Consider a second-order allpass �lter section with

symbolic coe�cients and symbolic adders, as shown on

Fig. 1. The multiplier coe�cients a and b are kept as

symbols, as well as c and d. The actual value of b is

within the range

�1 < b < 1 (1)

while a must fall into the range

0 < a < 1 (2)

The values of c and d can be +1 or �1

c = �1 (3)

d = �1 (4)

It is important to notice that the system transfer func-

tion does not depend on c and d

H(z) = �
a+ b(1 + a)z�1 + z�2

1 + b(1 + a)z�1 + az�2
(5)

The noise transfer functions for the two multipliers are

Ta(z) =
1+ b(1 + c)z�1 + cz�2

1 + b(1 + a)z�1 + az�2
(6)

Tb(z) =
(1� ac)(d+ z�1)

1 + b(1 + a)z�1 + az�2
(7)

It could be shown [6] that the section symbolic pa-

rameters a and bmight be explicitely related to the �lter

quantities like the selectivity factor, the passband edge

frequency, the passband ripple, and so on. For instance,

the multiplier coe�cients can be expressed in terms of

these quantities. By equating the multiplier coe�cients

with some preferred numerical values, we determine the

selectivity factor, the passband edge frequency, and the

passband ripple, as reported in [6].

When the coe�cients a and b are known the noise

transfer functions can be optimized to minimize the

product-quantization noise. By varying c and d we

search for the minimal noise variance.

In the computer-aided automated symbolic approach

we can perform e�cient multi-criteria optimization and

eliminate the non-feasible solutions. On the contrary,

in the traditional design the optimal solution, for some

given criteria, can lead to realizations that are impossi-

ble to implement. For example, the type 3 section in [1]

is reported to have the minimum product-quantization

noise, but, in the particular case of half-band �lters it

could not be implemented.

V. Symbolic analysis of digital filters

Digital signal processing has always been tied closely

to computer implementations, where the signals are

viewed as a stream of numbers. On the other hand,

the design of a signal processing system treats the sig-

nals as functions in the mathematical sense. In sym-

bolic signal processing, the signal is represented in a

computer as a formula, rather than as a sequence of

numbers. Thus, the value of the signal might only be

known in terms of a formula, instead of a number. In a

similar manner, signal processing operators, the build-

ing blocks for systems, are maintained in symbolic form,

as sets of symbolic transformation rules and de�nitions

to transform signals from one symbolic form into an-

other. This enables machine to simplify, rearrange, and

rewrite symbolic expressions until they take a desired

form [9].

This section describes a concept that provides a gen-

eral mechanism for encoding knowledge about the fully

symbolic analysis of digital �lters, and its implemen-

tation, the program SALDTIS [7][10], in Mathematica

[11].

A digital �lters, that has to be analyzed, is speci�ed

by the block diagram which depicts the general sys-

tem operation. It is determined by its topology, by the

nodes and the building blocks de�ned in the standard

SALDTIS library. The �ve elementary blocks are: the

generator (GEN), the multiplier (AMP), the unit delay

(DELAY), the adder (SUM) and the general functional

block (BLOCK).

Nodes and blocks are labeled by consecutive integer

numbers starting from 1. At least, one input source

(called a generator or stimulus) must exist. All the li-

brary blocks are uniquely speci�ed by a list of elements:

ftype, name, output, inputs, parametersg.

The block type is a code (keyword) to identify the

class a block belongs to. The name is the block indi-

vidual name to distinguish among blocks of the same

type. The output is a node label of the block output

terminal. The inputs is a list of one or more node labels

designating the block inputs. All inputs must be con-

nected. Outputs can be 
oating (no connection to other

nodes). The parameters are used to de�ne a block. It

is a single symbol, a list of symbols or symbolic expres-

sions. Also, the parameters can be given by arithmetic

expressions or speci�c numeric values: integer, real or

complex. The symbol z is a reserved symbol repre-

senting the z-transform variable. It can appear in the

expressions describing block parameters. The library

blocks are de�ned by equations: GEN ! Y (z) = G,

AMP ! Y (z) = aX(z) + Q, DELAY ! Y (z) =

z�1X(z), SUM ! Y (z) =
P

n

i=1
ciXi(z), ci = �1,

BLOCK! Y (z) =
P

n

i=1
Hi(z)Xi(z).

The block GEN de�nes a stimulus (source) to the

system. Its output is a known excitation in z. Typically,



when transfer functions are wanted, the excitation is set

to G = 1. At least, one GEN must be connected to an

input terminal of a block.

The AMP block, also referred to as the ampli�er block

or gain block, performs multiplication by a constant.

Usually, this constant is a single symbol or a speci�c

numeric value. The �rst, mandatory, parameter of the

block speci�es the multiplication constant. The sec-

ond, optional, parameter (Q) speci�es the noise due to

rounding the output.

The DELAY block represents a unit delay (z�1). No

parameter is required.

The block SUM performs the summing operation. Its

output is an algebraic sum of its inputs. A list of signs

is provided to specify addition or subtraction.

The BLOCK is a general multi-input-single-output

functional block. It is primarily targeted for substitu-

tion of complex systems of known transfer functions.

Generally, it can stand for a combination of AMP, DE-

LAY and SUM blocks.

VI. Example of symbolic analysis of PDF

Symbolic analysis will be illustrated by a sample anal-

ysis of an allpass digital �lter shown on Fig. 7a. in [3].

By using SALDTIS we derived the transfer function of

this �lter as

H(z) =
�a+ b(1� 3a)z�1 + (1� 2a)z�2

1 + b(1 + a)z�1 + az�2
(8)

which is di�erent from the reported expresion, and it

is not an allpass �lter characteristic (5). Next, we de-

rived the noise transfer function of the �lter shown on

Fig. 7b. Our result was di�erent from that presented

in the paper. The symbolic analysis, that is evaluated

in few seconds on a PC, is correct and it eliminates any

doubt usually existing in extensive manual derivations.

The next step is to try to �nd the correct realization.

Let's start from the general realization of Fig. 1. Re-

gardless the values of c and d, the transfer function is

of allpass type as required in [3]. If c = 1, d = 1, the

noise transfer functions are

Ta(z) =
1 + 2bz�1 + z�2

1 + b(1 + a)z�1 + az�2
(9)

Tb(z) =
(1� a)(1 + z�1)

1 + b(1 + a)z�1 + az�2
(10)

If c = 1, d = �1, the noise transfer functions are

Ta(z) =
1 + 2bz�1 + z�2

1 + b(1 + a)z�1 + az�2
(11)

Tb(z) =
(1� a)(�1 + z�1)

1 + b(1 + a)z�1 + az�2
(12)

The second case (c = 1, d = �1) is in fact realization

shown in Fig. 7b; therefore the correct noise transfer

function is given by (12) that is formerly [3] assigned to

Fig. 7a. The �rst case (c = 1, d = 1) result in the noise

transfer function formerly assigned to Fig. 7b. [3]. If

those two transfer functions are mixed, than this case

is in fact the target realization of Fig. 7a. The only

di�erence between Fig. 7a. (that is not allpass) and

the �rst case (c = 1, d = 1) is in the sign of the �rst

adder; thus our symbolic analysis �nds out the missing

"�" sign at the input of the �rst adder of the block-

diagram.

VII. Conclusion

Automated, computer-aided symbolic derivation of

various transfer functions of discrete-time systems is im-

portant in analysis and design of digital �lters. A new

symbolic approach has been proposed for �nding trans-

fer functions as symbolic expressions. A new program

has been developed to carry out symbolic analysis, and

help symbolic synthesis, of digital �lters. Its operation

is illustrated by an example of programmable digital

�lter design. It is targeted at analysis and design of

digital �lters, and in education. It can serve as a re-

liable tool to verify the existing solutions, to test and

evaluate new realizations, and to explore design alter-

natives in �lter synthesis to obtain simpler and more

cost-e�ective industry solutions.
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