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Abstract| Arti�cial neural networks (ANNs) are often
mixed with digital signal processing (DSP) to form under-
standing and interpretation systems. These systems are het-

erogeneous in that they contain a variety of algorithms which
may be synthesized onto a variety of software and hard-
ware technologies. Because ANN and DSP subsystems are
generally data-driven, their computation and control struc-
ture can be uni�ed under a data
ow model of computation.
In this paper, we demonstrate that ANN and DSP subsys-
tems can be modeled using data
ow models that yield static

implementations on either sequential or parallel machines.
We map Hop�eld, backpropagation, and biological networks
to Homogeneous Synchronous Data
ow (SDF) models. We
combine Boolean Data
ow (BDF) and SDF models to model
Cellular Neural Networks (CNNs). By modeling DSP oper-
ations in SDF, we are free to mix ANNs and DSP subsys-
tems and still retain e�cient simulated and synthesized sys-
tems due to the static scheduling. We give several examples
of simulating and synthesizing mixed ANN/DSP systems
using the Ptolemy software environment.

I. Introduction

The principle of data
ow and its application in com-
puter architectures were �rst proposed by Dennis [1]. A
major objective of a data
ow concept is to facilitate the
exploitation of data-driven parallel computation. The term
\data-driven" means that the activation of an operation is
determined by the availability of its input data. Because of
their data-driven execution principle, data
ow graphs can
be used to specify many parallel applications for simulation
and synthesis, such as arti�cial neural networks (ANNs).

An ANN is a computational model of biological neural
networks. In ANNs, all of the neurons are connected to at
least one other neuron and arranged in di�erent layers such
as input, hidden, and output layers. A biological neuron
is shown in Figure 1(a). The dendrites of a neuron carry
the signals from the other neurons. A chemical process
occurs at the synaptic site to scale the signals. Once the
signals are greater than a threshold, the neuron �res and
broadcasts the output signal to the other neurons.

ANNs are generalizations of mathematical models of hu-
man cognition or neural biology, which are based on the

The research was supported in part by grants from the Shell Oil
Company Foundation, the National Science Foundation CAREER
Award under Grant MIP-9702707, and The University of Texas at
Austin Summer Research Assignment Grant.

following assumptions [2]:

1. information processing occurs at many simple ele-
ments called neurons or nodes;

2. signals are passed between neurons over connection
links;

3. each connection link has an associated weight; and
4. each neuron applies an activation function to its net
input to determine its output signal.

Figure 1(b) shows a mathematical model that �ts these as-
sumptions, where x1; x2 and x3 are input signals, and w1,
w2 and w3 are the scaling factors (weights) at the synap-
tic site. The arti�cial neuron sums the weighted inputs,
applies an activation function to the weighted sum, and
passes the result to the other neurons on output y.

Using nodes and links to specify an arti�cial neuron
makes an ANN similar to a data
ow graph. A data
ow
graph is a network of basic components such as nodes,
arcs and tokens. Their nodes represent operations, and
the arcs connecting these nodes represent the operands of
these operations. An operation can be executed, that is,
the node is �red, if all the tokens on incoming edges are
available. Data
ow models have many characteristics in
common with ANNs:

1. they can be represented by directed graphs with nodes
and links (arcs);

2. each node functions as a simple processing element
and operates asynchronously with other nodes; and

3. both models execute value-passing computations.

Therefore, data
ow models of computation o�er an e�ec-
tive way to achieve e�cient parallel computation and lead
to e�cient implementations of neural networks [3].

The execution of neurons obey Synchronous data
ow
(SDF) semantics. SDF is a restricted type of data
ow
(see Figure 1(c)) �rst proposed by Lee in 1986 [1]. In an
SDF graph, nodes represent operations called actors. Arcs
represent �rst-in �rst-out (FIFO) communication channels.
with blocking reads and non-blocking writes. If an actor
attempts to read more data than is available in the FIFO
queue, then execution of the actor blocks (suspends) until
enough data is available. The FIFO queues passed tokens
which can represent an atomic data type (e.g. integer or
real) or a data structure (e.g. a matrix or an image).



In this paper, we model ANNs using SDF, except for
Cellular Neural Networks (CNNs). Section II describes
SDF in more detail and summarizes previous work. Sec-
tion III discusses data
ow models neural networks. Section
IV presents the modeling and simulation of di�erent neu-
ral networks. Section V discusses the synthesis of neural
networks in software. Section VI concludes the paper.

II. Background

SDF graphs obey the following semantics:

1. An actor is enabled for execution when enough tokens
are available at all of the inputs.

2. When an actor executes, it always produces and con-
sumes the same �xed amount of tokens.

3. The 
ow of data through the graph may not depend
on values of the data.

A non-negative integer delay may be associated with an
arc (as will be seen in Section IV). When the SDF graph
starts executing, the delay corresponds to the number of
initial tokens on the arc. In SDF, all computation and
data communication can always be scheduled statically.
So, algorithms expressed as valid SDF graphs can always
be converted into an implementation that is guaranteed to
take �nite-time to complete all tasks and use �nite mem-
ory. Thus, an SDF graph can be executed over and over
again in a periodic fashion without requiring additional re-
sources as it runs. This type of operation is well-suited
to digital signal processing and communications systems
which often process an endless supply of data. Neural
networks have been successful in a wide range of hetero-
geneous systems, e.g. in pattern recognition, vision, and
control systems, in which neural networks are combined
with other styles of algorithms. Data
ow models, which
have a rigorous mathematical foundation, provide a formal
way to specify, analyze, simulate, and synthesize heteroge-
neous systems. Many implementation properties such as
boundedness of memory usage and execution time can be
checked in some data
ow models without simulation. Be-
cause of their complexity, heterogeneous systems are often
simulated using discrete-event techniques. Compiled sim-
ulation using data
ow models, however, can run up to ten
thousand times faster.

Many other researchers have discussed data
ow model-
ing of neural networks. Yuceturk et al. [4] gave a for-
mal de�nition of mapping neural networks onto data
ow
graphs. Kim et al. [5] and Wang et al. [3] proposed
the neural-data
ow graph transformation. Achyuthan et

al. [6] and Mutlaq et al. [7] addressed the hardware de-
sign of ANNs by data
ow models. Liu et al. [8] used a
data
ow speci�cation methodology to specify a neural net-
work design and the system dynamics. Hop�eld networks
and backpropagation networks are simulated on the neu-
ral data
ow-based processor [7], the data
ow-based multi-
processor system, [3] and the MIT tagged token data
ow
software simulator [5]. A spike-processing biological neural
network is simulated by Jahnke et al. [9].

III. Dataflow models of neural networks

Figure 1 shows the similarity among the biological neu-
ron, and the mathematical and computational models.
Therefore, the data
ow graphs can be used to model neu-
rons and neural networks. The mathematical model in Fig-
ure 1(b) shows that a neuron sums the weighted inputs and
invokes the activation functions. In this paper, a neuron
is divided into two parts. The �rst part of a neuron only
performs the weighted sum. The second part of a neuron
is an activation function which is generated separately be-
cause one neuron can invoke di�erent kinds of activation
functions, but it always sums the weighted inputs.

There are two di�erent kinds of neurons de�ned in the
�rst part of a neuron. The �rst kind is the data-passing
neuron such as input neurons and threshold neurons. All
input neurons receive their inputs only from the external
world and send them to a hidden layer. A threshold neu-
ron will output �1 to neurons in the next layer. Both
input and threshold neurons have no operational function.
The second kind is called the data-processing neurons such
as hidden neurons in a hidden layer and output neurons
in an output layer. Data-processing neurons calculate the
weighted sum and output the summation to an activation
function. There are di�erent types of activation functions
based on the applications. The commonly-used activation
functions are binary function (like the unit step function),

binary sigmoid function (f(x) =
1

1 + e�x
) with the output

from 0 to 1, and bipolar sigmoid function (g(x) = 2f(x)�1)
with the output restricted on the interval from �1 to 1. A
tanh function tanh(t) = 2f(2x)�1 is usually used to model
the bipolar sigmoid function.

The McCulloch-Pitts neuron [11], the earliest reported
arti�cial neuron, sums the weighted inputs and invokes the
binary activation function to produce the binary output.
McCulloch and Pitts attempted to establish a link between
neurology and computational theory. In particular, they fo-
cused on how primitive logical operations might be carried
out by single neurons, and how complex logical operations
might be carried out by complex networks of neurons. A
McCulloch-Pitts neuron is used as a logic function shown
in Figures 2(b) and 5.

Neural networks consist of data-passing and data-
processing neurons and at least one of activation func-
tions. Neurons and activation functions will form one layer.
Therefore, there are single layer and multilayer neural net-
works, which will be implemented in next section.

IV. Modeling and simulation of neural

networks in SDF domain

A. Model of simple neural networks

The SDF model of a neuron consists of a data-processing
neuron plus an activation function. Figure 2(a) implements
a simple AND function using existing blocks (called stars)
in the SDF domain in Ptolemy 0.6. The \Gain" stars act
as the weights. The \Sgn" (signum) stars implement the
bipolar activation function.
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(a) Model of a biological neuron (b) Mathematical model (c) Computational model

Fig. 1. Models of a biological neuron and arti�cial neurons.

In Figure 3(a), which shows a more complicated XOR
function with three neurons, the sigmoid function is im-
plemented as a subsystem (called a galaxy) of existing
Ptolemy 0.6 stars. We add several new stars to Ptolemy
0.7 to realize activation functions directly to improve the
execution time. In simulation, execution time for a given
system is directly proportional to the number of blocks in
the speci�cation. Figures 2(b) and 3(b) show the imple-
mentation of AND and XOR logic functions using the new
stars. Tables I and II compare the execution time of the
same systems using existing stars and the new stars. The
new stars decrease the simulation time by a factor 2. In
synthesize code, on the other hand, the dramatic improve-
ment in writing custom stars is less in execution time and
more in data memory usage because increasing the num-
ber of stars would increase the amount of bu�er memory
to implement the FIFO channels on the arcs.

Inputs Outputs Time(s)

1 2 M-P Star M-P Star

0 0 0 -1 0.014471 0.01783

0 1 0 -1 0.010954 0.015137

1 0 0 -1 0.050023 0.054113

1 1 1 1 0.01225 0.015562

TABLE I

Implementation times of AND functions.

Inputs Output Time(s)

1 2 value new stars

0 0 0.11026 0.214433 0.478633

0 1 0.861419 0.464358 0.969289

1 0 0.924015 0.21618 0.699778

1 1 0.101868 0.2803 0.491132

TABLE II

Implementation times of an XOR function.

B. Model of a single-layer network

A Hop�eld network [3], [7] is a single-layer ANN that
is fully connected| each unit is connected to every other
unit. The network has symmetric weights with no self-

connections; i.e., wij = wji; and wii = 0. Figure 4(a)
is a three-neuron Hop�eld network, and Figure 4(b) is its
simulation in Ptolemy. The two diamonds in Figure 4(b)
are the initial delays used in SDF models. The 
ow of data
in Hop�eld network is not in the same direction, and it
is possible for information to 
ow from one node back to
itself through other nodes. Therefore, the Hop�eld network
is known as a feedback or recurrent network. The state
of the network at any time is given by the node outputs
(n1; n2; n3) in Figure 4(a). The weights store a certain
pattern, which is called a stable state of the network. The
system evaluates in time from any arbitrary starting state
to the stable states. In Figure 4(b), no matter where we
put the initial delays as a starting state, the network will
eventually reach one of the stable states, (0; 1; 1) or (1; 1; 0),
which are the \pattern" stored by this network.

C. Model of physiological phenomena

The previous sections show that the SDF graphs can
model the neural networks. However, they are the arti�cial
neural networks. In this section, McCulloch-Pitts neurons
are used to model the perception of heat and cold. This
is a well-known and interesting physiological phenomenon.
It was originally presented by McCulloch and Pitts [11]
in 1943. If a cold stimulus is applied to a person's skin
for a very short period of time, the person will perceive
heat. However, if the same stimulus is applied for a longer
period, the person will perceive cold. This physiological
phenomenon can be modeled using SDF and implemented
in Ptolemy (Figure 5). The impulse star is used to simulate
the short-period stimulus. When the schematic is running,
the heat perceptor will output 1.

D. Model of a cellular neural network

Cellular neural networks (CNNs) were proposed by Chua
and Yang in 1988 [12]. They are a new class of information-
processing systems, which are widely used in image process-
ing and pattern recognition. A CNN is an N -dimensional
array of elements called cells. A two-dimensional CNN is
shown in Figure 6(a). Each cell has multiple inputs and
one output and is characterized by an internal state, which



Const

Const

Gain

Gain

Add Sgn
Const
Threshold Gain TkBarGraph

weight = 0.5

thres = 1.0

weight = 0.5

Bipolar Function

Modeling AND Function with 
Bipolar Activation Function

Const

Const

MPNeuron TkBarGraph

Modeling AND, OR and NAND Functions
with a McCulloch-Pitts Neuron

in SDF domain

(a) simulation with the existing stars (b) simulation with the new star

Fig. 2. An AND function.

Const

Const

Const
Threshold

Fork

Fork

Fork

Gain

Gain

Gain

Gain

Gain

Gain

Add

Add

Gain sigmoid

Gain sigmoid

Const
Threshold

Gain

Gain

Gain

Add Gain sigmoid TkBarGraph

Input Layer

Learning Rate

Hidden Layer Weights

Learning Rate

Output LayerWeights

Modeling XOR Function  by a Three-Layer Neural Network
with Sigmoid Function (a Galaxy)

Const
Threshold

Fork

Fork

Fork

Neuron

Neuron

Sigmoid

Sigmoid

Const
Threshold

Neuron Sigmoid

Const

Const
TkBarGraph

Modeling  XOR Function by a Three-Layer Neural
Netowork with Sigmoid Activation Function

(a)simulation with the existing stars (b) simulation with the new star

Fig. 3. An XOR function.

N1

N 2
N3

1
1

1

1

-2
-2

MPNeuron Fork MPNeuron Fork MPNeuron Fork

TkBarGraph TkBarGraph TkBarGraph

Three-Node Hopfield Network in SDF Domain

(a) 3-neuron Hop�eld network (b) Implementation of Hop�eld network

Fig. 4. Single-layer Hop�eld network.

Impulse Fork MPNeuron

MPNeuron

Fork

MPNeuron

MPNeuron

Const
TkBarGraph

TkBarGraph

Heat Receptor

Cold Receptor

Heat Perceptor

Cold Perceptor

Modeling the Perception of Hot and Cold
with McCulloch-Pitts Neurons in SDF Domain

Fig. 5. Simulation of the perception of heat and cold.

is de�ned by:

_vxij(t) = �vxij(t) +
X

C(k;l)2Nr(i;j)

A(i; j; k; l)vykl +

Iij +
X

C(k;l)2Nr(i;j)

B(i; j; k; l)vukl

vxij(t+ 1) = _vxij(t) + vxij(t)

where vuij(t), vxij(t) and vyij(t) are the input, state and
output signals of cell C(i; j), respectively. Each cell C(i; j)

interacts with the neighbors C(k; l) within a �nite neigh-
borhood Nr(i; j). Any arbitrary size of a CNN array is
de�ned by only a few parameters such as A, B and I . A,
B and I , which are arranged in matrices, correspond to
a feedback template, a feedforward template, and a bias
term, respectively. Together, they constitute a cloning tem-
plate. Figure 6(b) shows a block diagram of a CNN and
illustrates that CNNs are recurrent networks. After a �nite
number of iterations, the output of CNNs will converge to
�1 and 1 [12].
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The execution of CNNs is di�erent from the execution
of other ANNs. Although the weights in ANNs and the
cloning templates in CNNs are precalculated, CNNs (unlike
other ANNs) require data-dependent iteration. Thus, the

ow of data in CNN graphs is dependent on values of the
data. Therefore, the SDF model cannot model CNNs. An
example of a CNN for edge detection [12] is shown in Figure
7, which is modeled by mixing SDF and Boolean Data
ow
(BDF) models. BDF models are SDF models plus \Switch"
and \Select" actors to implement if/then/else statements
and while loops, i.e., to allow the 
ow of data to depend on
the values of the data. A binary diamond image in Figure
8(a) is the input to the CNN, and the edge map with �1
and 1 in Figure 8(b) is the output from the CNN. We can
change cloning templates to simulate di�erent CNNs.

V. Synthesis of neural networks in CGC domain

Ptolemy 0.6 and 0.7 realize models of computation as
simulation domains, and code generators for a subset of
the data
ow models as code generation domains. Both do-
mains execute a system by invoking the setup methods for
each block, schedule the resulting system, invoke the begin
method for each block, run the system according to the
schedule, and then call a wrapup method for each block.
In a simulation domain, the run method of the blocks im-
plement the functionality of the block using C++ code. In
a code generation domain, the run method (which is called
only once) generates code to implement the functionality
of the block. Ptolemy 0.7 supports code generation in C,
C++, assembly (Motorola 56000 and Texas Instruments



TMS320C50), and VHDL. Next, we describe synthesizing
SDF graphs for neural networks in C code.
We generate the stars with the same names and the same

parameters in CGC domain as in SDF domain so that it is
easy to move from one domain to another in Ptolemy. We
retarget all the examples in Figures 2, 3, 4 and 5 from SDF
domain to CGC domain. Therefore, the schematics in CGC
domain are exactly the same as those in SDF domain.

VI. Conclusions and future work

The similarities between ANNs and SDF graphs make it
possible to model ANNs using SDF models. The develop-
ment of massively parallel implementations of ANNs is a
complicated process. Since SDF captures only the data de-
pendencies, parallel scheduling algorithms can be applied.
A single-layer network such as Hop�eld network, multi-

layer networks such as the backpropagation, and a biolog-
ical simulation of the perception of heat and cold are im-
plemented in SDF domain in Ptolemy. In other words, su-
pervised network (backpropagation) and unsupervised net-
work (Hop�eld network) can be modeled by SDF models,
especially homogeneous SDF models, in which the num-
ber of tokens produced (or consumed) is one per arc. A
novel class of neural networks, CNNs, is simulated by SDF
and BDF models. All of the weights in ANNs and the
cloning templates in CNNs are precalculated and trans-
ferred to the models. Training ANN has not been imple-
mented in Ptolemy, but there are several methods to train
neural networks in the system level. One way is to use
the Ptolemy interface to Matlab to complete the training
in Matlab (Figure 9). The second method is to generate
the stars for the di�erent training methods. The third ap-
proach is to train the di�erent topologies of ANNs by using
SDF and BDF in Ptolemy.
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Fig. 9. Training of a backpropagation network by combining Ptolemy
and Matlab.

This paper demonstrates system-level design of hetero-
geneous systems using neural networks. By using data
ow
models, we can combine neural networks with signal pro-
cessing, communications, and control algorithms in a for-
mal, predictable way. Although the example systems in
this paper are relatively small, the result scale to larger net-
works by using either higher-order functions as a graphical
syntax to describe regularity and multidimensional SDF se-
mantics to describe interconnected graphs. We show that
ANNs can generally be modeled using SDF, except for Tur-
ing equivalent CNNs which require BDF.
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