
Goal

� Design a new family of wavelets:

Biorthogonal Quincunx Coifman Wavelets

� 2-D nonseparable

� compactly supported

� biorthogonal

� quincunx down- and up-sampling

� Useful properties:

� zero-phase �lterbanks

� dyadic rational �lter coe�cients

� cardinal scaling functions

� converge to ideal �lters asymptotically

� closed-form formulae

� Promising applications:

� image compression

� sampling/interpolation
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Motivation

� Why biorthogonal wavelets?

� more exible design

� linear-phase �lterbanks

� cardinal scaling functions

� Why quincunx wavelets?

� �ner multiresolution analysis

� allow nonseparable sampling

� allow nonseparable �ltering

� more isotropic bases

� better adaption to human visual system

� Why Coifman wavelets?

� tradeo� between two types of vanishing

moments

� easy to achieve linear phase

� useful in sampling/interpolation
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1-D Biorthogonal Coiets

� Synthesis �lter of order l:

Hl(!) =

�
1+ cos!

2

�k

�
k�1X
p=0

�k � 1 + p

p

� �1� cos!

2

�p

where l = 2k

� Analysis �lter of order (l; l0):

fHl;l0(!) = 2Hl0(!) +Hl(!)� 2Hl0(!)Hl(!)

� Useful properties:

� zero-phase �lterbanks

� dyadic rational �lter coe�cients

� converges to ideal �lters asymptotically

� cardinal scaling functions

� excellent for data compression
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Quincunx Filterbank and Wavelet
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Iterated Synthesis Filterbank
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Three Equivalent De�nitions

� All moments up to order (l�1) of the scaling

function �(t) and the wavelet  (t) vanish:Z
R2
t
k
�(t) dt = �[k];

Z
R2
t
k
 (t) dt = 0

for k = [k1; k2] 2 Z2, 0 � k1 � l� 1, 0 � k2 �

l� 1, and k1+ k2 � l� 1, where �[k]

denotes the Kronecker delta symbol and t
k

denotes t
k1
1 t

k2
2 .

� All moments up to order (l�1) of the lowpass

and highpass �lters vanish:X
n2Z2

n
k
hl[n] = �[k];

X
n2Z2

n
k
gl[n] = 0

for k, k1, and k2 as above, where n
k denotes

n
k1
1 n

k2
2 .

� The frequency response of the lowpass �lter

has a zero of order l at the origin and the

aliasing frequency � = [�; �]:

@k1+k2Hl(!1; !2)

@!
k1
1 @!

k2
2

������
!=0;�

= 0

for k1 and k2 as above.
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Why Vanishing Moments?

� Vanishing moments of wavelet

� Combination of shifted scaling functions

can approximate smooth functions accu-

rately.

� The wavelet coe�cients of a smooth func-

tion decay rapidly.

� Necessary condition for a wavelet to be

smooth.

� Correspond to zeros of Hl(!) at �.

� Vanishing moments of scaling function

� The uniform samples of a smooth function

can approximate its wavelet expansion

coe�cients accurately.

� Imposing zero moments on a scaling func-

tion improves its symmetry and makes the

�lterbank close to linear-phase.

� Correspond to zeros of Hl(!) at 0.
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Filterbank Design

� McClellan transformation-based design:

� 1-D prototype �lter:

Hl(!) =
1

2
+

l=2X
k=1

2hl[2k � 1]T2k�1[cos!]

where Tp[�] denotes the pth-order Cheby-

shev polynomial

� transformation function:

F(!) =
1

2
(cos!1+ cos!2)

� transformed 2-D �lter:

Hl(!) =
1

2
+

l=2X
k=1

2hl[2k � 1]T2k�1[F(!)]

� Advantages:

� simple

� preserve the properties of 1-D �lter
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Sampling and Interpolation

� The synthesis scaling function in a BQCW

system of any order is cardinal; i.e., for any

n 2 Z2,

�(n) = �[n]

which is a useful property in sampling and

interpolation.

� The approximation

ef(t) = X
k2Z2

f(D�i
k)�(Di

t� k)

is exact at the quincunx sampling grid:

ef(D�i
n) = f(D�i

n)

for any n 2 Z2 and any integer i.

� Wavelet expansion coe�cients can be accu-

rately approximated by function samples due

to the vanishing moment conditions on the

scaling function:

hf(t); 2i=2
�(Di

t� k)i � f(D�i
k):
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Asymptotic Convergence

� The frequency responses of BQCW �lters

converge pointwise to the ideal diamond-

shaped halfband lowpass �lters as their

orders tend to in�nity:

lim
l!1

Hl(!) =

8>><>>:
1 if j!1j+ j!2j < �

1=2 if j!1j+ j!2j = �

0 otherwise

lim
l;l0!1

fHl;l0(!) =

(
1 if j!1j+ j!2j � �

0 otherwise

� The convergence of Hl(!) is monotonic:

Hl(!) � Hl+1(!) if j!1j+ j!2j � �

Hl(!) � Hl+1(!) if j!1j+ j!2j > �

� The convergence of Hl(!) does not exhibit

any Gibbs-like phenomenon.

� The convergence of fHl;l0(!) exhibits a one-

sided Gibbs-like phenomenon.
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A Design Example
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Energy Compaction
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Goldhill

BSGAM: Barlaud-Sole-Gaidon-Antonini-Mathieu,

IEEE Trans. Image Process., Jul. 1994
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