Goal |

e Design a new family of wavelets:
Biorthogonal Quincunx Coifman Wavelets

— 2-D nonseparable
— compactly supported
— biorthogonal

— quincunx down- and up-sampling

e Useful properties:
— zero-phase filterbanks
— dyadic rational filter coefficients
— cardinal scaling functions
— converge to ideal filters asymptotically

— closed-form formulae

e Promising applications:
— image compression

— sampling/interpolation



Motivation I

e \Why biorthogonal wavelets?
— more flexible design
— linear-phase filterbanks

— cardinal scaling functions

e \Why quincunx wavelets?
— finer multiresolution analysis
— allow nonseparable sampling
— allow nonseparable filtering
— more isotropic bases

— better adaption to human visual system

e Why Coifman wavelets?

— tradeoff between two types of vanishing
moments

— easy to achieve linear phase

— useful in sampling/interpolation



1-D Biorthogonal CoifletsI

e Synthesis filter of order [:

1 4+ cosw\*
Hl(W)=( 5 )
k—1
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8 Z( P )( 2 )
p=0
where [ = 2k

e Analysis filter of order (I,1"):

Hy y(w) = 2Hy(w) + Hy(w) — 2Hy(w) Hy(w)

e Useful properties:
— zero-phase filterbanks
— dyadic rational filter coefficients
— converges to ideal filters asymptotically
— cardinal scaling functions

— excellent for data compression



Quincunx Filterbank and Wavelet
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Three Equivalent Definitionsl

e All moments up to order (I—1) of the scaling
function ¢(t) and the wavelet (t) vanish:

k _ k —
/R2 tR (1) dt = S[k], /R2 £ (t) dt = 0

for k= 1[k1,ko] €Z2, 0<ki1<Il—1,0<ky<
[ —1, and k1 + k> <1 —1, where §[k]
denotes the Kronecker delta symbol and tk
denotes t]fltg?

e All moments up to order (I—-1) of the lowpass
and highpass filters vanish:

> nFhyln] = 5[k], > nFgln] =0

ncZz? neZz?
for k, k1, and k» as above, where n* denotes
nliln152.

e [ he frequency response of the lowpass filter
has a zero of order [ at the origin and the
aliasing frequency © = [m, «]:

M1t R2 Hy (w1, wp)
8wlf18w§2

for k1 and ko as above.

=0

Ww=0,T



Why Vanishing Moments? I

e Vanishing moments of wavelet

Combination of shifted scaling functions
can approximate smooth functions accu-
rately.

T he wavelet coefficients of a smooth func-
tion decay rapidly.

Necessary condition for a wavelet to be
smooth.

Correspond to zeros of H;(w) at .

e Vanishing moments of scaling function

The uniform samples of a smooth function
can approximate its wavelet expansion
coefficients accurately.

— Imposing zero moments on a scaling func-

tion improves its symmetry and makes the
filterbank close to linear-phase.

— Correspond to zeros of H;(w) at 0.



Filterbank Design I

e McClellan transformation-based design:

— 1-D prototype filter:

1/2
1
Hy(w) = 5 + > 22k — 1] Ty _1[cos w]
k=1

where Ty[-] denotes the pth-order Cheby-
shev polynomial

— transformation function:

F(w) = %(cos w1 + COSw»)

— transformed 2-D filter:

1/2
(@) =+ Y 2m[2k — 1] Top_y[F(@)]
k=1

e Advantages:
— simple

— preserve the properties of 1-D filter



Sampling and Interpolation I

e T he synthesis scaling function in a BQCW
system of any order is cardinal; i.e., for any
n c 72,

p(n) = d[n]

which is a useful property in sampling and
interpolation.

e [ he approximation

f)= Y f(D7'k)$(D't—k)
kecz?
IS exact at the quincunx sampling grid:
f(D7'n) = f(D'n)

for any n € Z2 and any integer ;.

e Wavelet expansion coefficients can be accu-
rately approximated by function samples due
to the vanishing moment conditions on the
scaling function:

(f(t), 2/2¢(D't — k)) = f(D~'k).



Asymptotic Convergence I

e The frequency responses of BQCW filters
converge pointwise to the ideal diamond-
shaped halfband lowpass filters as their
orders tend to infinity:

P

1 if wi+ fwo| <7
Jim Hy(w) = $ 1/2 if |wi| + |wo| ==
e 0 otherwise

\

1 if |wi] F |wo| <7

im H;p(w) = { 0 otherwise

[I'—o0

e The convergence of H;(w) is monotonic:

H(w) < Hjypq(w) if w4+ |wa| <7
Hi(w) > Hjp1(w)  if Jwi] 4+ |wo| >

e The convergence of H;(w) does not exhibit
any Gibbs-like phenomenon.

e The convergence of H;;(w) exhibits a one-
sided Gibbs-like phenomenon.



A Design Example
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BSGAM: Barlaud-Sole-Gaidon-Antonini-Mathieu,
IEEE Trans. Image Process., Jul. 1994
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