

Real-time Sonar Beamforming on a Unix Workstation
Using Process Networks and POSIX Threads

Gregory E. Allen

Applied Research Laboratories:
The University of Texas at Austin

Austin, TX 78713-8029

gallen@arlut.utexas.edu

Brian L. Evans and David C. Schanbacher

Dept. of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712-1084

{bevans,schanbac}@ece.utexas.edu

Abstract

Traditionally, expensive custom hardware has been
required to implement data-intensive sonar beamforming
algorithms in real-time. We develop a sonar beamformer in
software by merging the following recent technologies: (1)
symmetric multiprocessing on Unix workstations, (2) light-
weight POSIX threads, and (3) the Process Network model
of computation. We find that it is feasible for a 4-GFLOP
digital interpolation process network beamformer to run in
real-time on a Sun workstation with 16 UltraSPARC-II pro-
cessors running at 336 MHz. The workstation beamformer
significantly reduces cost and development time over an
equivalent hardware beamformer.

1. Introduction

Sonar beamforming algorithms can require on the order
of billions of multiply-accumulates (MACs) per second,
and therefore have traditionally been implemented in cus-
tom hardware. Current symmetric multiprocessing work-
stations post benchmarks that meet these capabilities at a
fraction of the development and manufacturing costs of a
custom hardware solution. However, conventional imple-
mentations of the UNIX operating system have not been
capable of deterministic real-time performance.

The Portable Operating System Interface (POSIX) is a
recent standard with the goal of providing source-code
portability across many different platforms. POSIX exten-
sions provide support for real-time applications on UNIX
workstations. One such extension, the POSIX Pthread
library, provides independent “lightweight” flows of con-
trol which can execute on multiple processors.

 In this implementation, the workstation is both the

development platform and the target architecture. Now we
can deploy the computer-aided design tools along with the
design. Software development in a workstation environ-
ment is generally easier than in a custom embedded hard-
ware environment due to the availability of better
affordable development and debugging tools. Workstations
also offer better portability, upgradability, and maintain-
ability than custom hardware solutions. In order to facili-
tate implementation of computationally intensive systems,
a reliable formal design methodology is needed for orga-
nizing and developing real-time multiprocessor software.

The Process Network [1, 2] model of computation,
which is a superset of dataflow, captures concurrency and
parallelism in signal processing systems. Implementing
this model with Pthreads gives a low-overhead, high-per-
formance, scalable framework. Pthreads are dynamically
scheduled by the operating system, and symmetric multi-
processing efficiently utilizes multiple processors.

The goal is to implement a high-resolution multi-fan
three-dimensional digital interpolation beamformer which
runs in real time on a Unix workstation. This is realized by
performing a design space exploration of software beam-
forming implementations, modeled as a Process Network.

2. Beamforming

High-resolution sonars generally consist of an array of
underwater sensors along with a

beamformer

 to determine
from which direction a sound is coming. The sensor ele-
ment outputs must be combined to form multiple narrow
beams, each of which “looks” in a single direction and is
insensitive to sound in neighboring directions.

Time-domain beamforming is realized by weighting,
delaying, and summing the outputs of an array of transduc-
ers. For M transducers each receiving a signal

xm(t)

, the
output of a single beam can be calculated by

where

α

m

 is the shading coefficient for the mth sensor, and

G. Allen was supported by the Independent Research and Develop-
ment Program at Applied Research Laboratories: The University of
Texas at Austin. B. Evans was supported by the Defense Advanced
Research Projects Agency (DARPA) and the US Army under
DARPA Grant DAAB07-97-C-J007 through a subcontract from
the Ptolemy project at the University of California at Berkeley.

b t() αm xm t τm–()⋅
m 1=

M

∑=

τ

m

 is the required time delay for the mth sensor.
The beamforming time delays are determined by geo-

metrically projecting the elements of the sensor array onto
a line that is perpendicular to the Maximum Response
Angle for the desired beam. This is demonstrated in Fig. 1
with a semi-circular array of 80 elements, for a beam point-
ing 20˚ off axis.

The distance from each physical element location to the
perpendicular line (divided by the speed of sound) is the
necessary time delay for the corresponding element. Note
that just over 50 of the elements have been projected, and
the remaining elements have been left out. Although the
remaining elements could be used in the calculation, their
response in the direction of interest is relatively small for
this geometry, and they would merely add noise. Leaving
these elements out also substantially reduces computation.

2.1. Digital interpolation beamforming

In a digital system, the time delays must be quantized to
the nearest sample, which perturbs the beam pattern. Digi-
tal interpolation beamforming uses interpolation of the
receiver signals to achieve more precise time delay resolu-
tion, thus reducing the quantization error at a cost of more
computation. Beam degradation introduced by interpola-
tion is controllable and quite small for an interpolation fil-
ter of modest design [4].

Fig. 2 shows a digital system with an interpolation
beamformer. The sampling interval needed to satisfy the
Nyquist criterion is

∆

. Digital interpolation is performed to
the interval

δ

, where

∆

 = L

δ

, and L is an integer larger
than one. Now time delays are quantized to integer multi-
ples of

δ

, i.e.,

τ

m

 = N

m

δ

.
Modeling interpolation beamforming as a sparse FIR

filter allows for a simple, concise organization of the algo-

rithm. If multiple samples of the entire array are stored
contiguously in memory, each beam output can be gener-
ated by an FIR filter of length

K

 = (

D

+

P

-1)

M

, where

D

 is
the maximum sample delay due to the array geometry,

M

 is
the total number of sensors in the array, and

P

 is the num-
ber of points used to calculate each interpolation result.
Although this can be an extremely long filter, most of the
coefficients are zero. The number of non-zero coefficients
is

C

 =

PS

, where

S

 is the number of sensors used to calcu-
late each beam, and the sparsity is 1-

C

/

K

. Note that in this
model, the digital interpolation lowpass filter is an FIR fil-
ter with an impulse response of length

K

 =

LP

.

Fig. 3: Matrix operation to generate one
beam set

For each sample of a beam’s output,

C

 multiply-accu-
mulates (MACs) are required. When

B

 beams are calcu-
lated, (

BC

) MACs must be executed. Fig. 3 shows the
matrix operations necessary to calculate

B

 beams from the
input data stream.

2.2. Vertical beamforming

For the sensor array utilized in this paper, vertical beam-
forming (staving) must be performed before digital inter-
polation (horizontal) beamforming. For the vertical
beamformer, no time delay is necessary, and no digital
interpolation is required. For each sample of the logical 80
staves, one dot product per vertical shading set must be cal-
culated. Additionally, the vertical beamformer converts the
data from integer to 32-bit floating-point format.

These beamforming algorithms have an extremely high
degree of parallelism, which can be exploited by using the
Process Network model of computation.

Fig. 1: Projection of sensor elements from
a semi-circular array

-20 -15 -10 -5 0 5 10 15 20

-5

0

5

10

15

20

Projection for a beam pointing 20° off axis

x position, inches

y
po

si
tio

n,
 in

ch
es

20°

sensor element
projected sensor element

Fig. 2: Digital interpolation beamformer
with digitizing sensor array

A/D Interpolate N1δ

Sample at

interval ∆
Interpolate to

interval δ = ∆/L

Time delay

at interval δα1

A/D Interpolate NMδ

•
•

•
•

•
•

•
•

αΜ Σ

sensor array weights digital interpolation beamformer

stave data

(1 by K) (K by B)

beam data
(1 sample)

(1 by B)

•••
beam

1
coefs

beam
B

coefs

3. Process Networks

In the process network model of computation, concur-
rent processes are connected by unidirectional first-in, first-
out (FIFO) queues to form a network. The model uses a
directed graph notation, where each node represents a pro-
cess and each edge represents a communication channel
(queue). This model is natural for describing the streams of
data samples in a signal processing system. Fig. 4 shows a
simple process network program, in which processes A and
B are connected by a communication channel, P.

Process nodes may have any number of incoming or
outgoing queues, and may communicate only via these
queues. A node suspends execution when it attempts to
consume data from an empty queue. However, a node is
never suspended for producing data, so queues are of infi-
nite length. This can cause unbounded accumulation of
data on a given queue.

The results of a process network program do not depend
on the order of execution of the process nodes. The tokens
produced on all communication channels are the same for
every execution order that obeys these semantics. This
important property of process networks is called

determin-
ism

. Because process networks are determinate, the can be
executed sequentially or in parallel with the same outcome.

Although the total stream lengths are a property of the
program, the number of unconsumed tokens that can accu-
mulate on communication channels depends on the choice
of execution order. Parks [3] developed dynamic schedul-
ing rules that will yield a bounded schedule, if one exists:

1. Block when attempting to read from an empty queue.
2. Block when attempting to write to a full queue.
3. If we reach

artificial deadlock

, increase the capacity of
the smallest full queue until the producer associated
with it can fire.

Artificial deadlock is the case where execution has
stopped because processes are blocked writing to full chan-
nels. This bounded scheduling policy has the desired
behavior for all types of programs. Now any scheduler will
work, because any execution leads to bounded buffering on
the queues. This model is well-suited for implementation
using the threaded model of concurrent programming.

4. Implementation

Our implementation of Process Networks is intended
for computationally intense algorithms on large symmetric

multiprocessing workstations. Although our implementa-
tion is applied to beamforming in this paper, it could be
used on any appropriate processing task, and is in no way
limited to this purpose.

Each node of a Process Network program corresponds
to a different thread. These multiple threads can run con-
currently when the program has parallelism, and thus can
take advantage of multiple processors. Pthreads provide
high performance in a low-overhead environment, are
source-code compatible with many versions of Unix, and
can be given fixed real-time scheduling priority.

We use nodes of fairly large granularity, where the cost
of firing a node is much larger than the cost of a light-
weight thread context switch. However, if a node is too
computationally costly, it must be divided into smaller
pieces in order to run in real time. Generally, there is a
tradeoff between overhead and latency.

The queues which connect the process nodes are opti-
mized for data-intensive applications, and are intended to
make up for the lack of circular address buffers in general
purpose processors. A design goal was to prevent unneces-
sary copying of data. Therefore, the user reads and writes
data directly from queue memory, and data is guaranteed to
be contiguous in memory. This reduces overhead, and sim-
plifies implementations that interface to these queues.

The queues implement their apparent circular address-
ing by mirroring the beginning of the queue’s data region
(up to some threshold) just past the end of the queue’s data
region. Using this methodology, the queue can provide a
pointer to a contiguous block of data elements even when
operating near the end of the data region. The queue man-
ages this mirroring, and guarantees that the same data
resides in both locations. Fig. 5 illustrates this mirroring in
the queue implementation.

Fig. 5: Queue implementation

These queues have a tradeoff between memory usage
and performance. When the data region is much larger than
the mirror region, the queue rarely needs to copy data.
When the mirror region is as large as the data region, copy-
ing must occur frequently, increasing overhead and sacri-
ficing performance. Fortunately, memory is usually
abundant on a workstation.

On some systems (including Sun Solaris), the virtual
memory manager can be used to prevent the queues from
having to copy data at all. By mapping a shared memory
object to multiple virtual addresses, the same physical
memory pages appear at multiple addresses, and apparent
circular addressing is achieved.

Fig. 6 shows a block diagram of the full beamforming

Fig. 4: A process network program

A B
P

Mirrored data

Queue data region Mirror region

system, and the corresponding nodes in the Process Net-
work implementation. The vertical beamformer forms 3
sets of 80 staves from 10 vertical elements each.The hori-
zontal beamformers each form 61 beams from the 80
staves, using a 2-point interpolation filter.

Matlab was used to generate and test beam coefficients,
and to verify the results. Each horizontal beamformer per-
forms interpolation beamforming, with 32-bit floating-
point numbers. When this operation is modeled as a sparse
FIR filter, the filter length is 2560 coefficients, 96% of
which are zero.

Fig. 7 shows a sample set of coefficients used. Although
organized as a one-dimensional FIR filter, the information
contained in the coefficients is more evident when plotted
as sample number vs. stave number. In the 2-D grid, zero
coefficients are white and non-zero coefficients are black.
The shape of the array is clearly visible in the coefficients.

These beamforming algorithms are highly paralleliz-
able, and several different methods for dividing the task
among threads were examined. One obvious approach is to
calculate different beams using different threads, thus
dividing the task by beam. This follows naturally from
“partial-sum” beamforming [5], using a minimal amount of
memory, with minimum latency. Indeed, this method is fre-
quently employed in custom hardware designs that use dig-
ital signal processor (DSP) computing engines. However
this “DSP-minded” approach suffers from poor cache utili-
zation on a workstation, resulting in poor performance.

A more “workstation-minded” approach is to divide the
task in time. Memory bandwidth, not raw processing
power, is the major obstacle. This method requires more
memory and gives higher latency, but delivers better per-
formance through superior cache utilization. Best perfor-
mance is obtained when the calculation is small enough to
fit in the cache, so that the number of cache misses is rela-
tively small. Within the kernel beamforming routines, care
must be taken to heed this memory usage limit.

Because a single thread cannot achieve real-time perfor-
mance, a beamformer node must divide the task. In order to
divide this calculation in time without copying data, a hori-

zontal beamformer node manages multiple worker nodes.
The number of worker nodes can easily be increased or
decreased, as the processing performance requires. This
method is similar to a thread pool, which is a common
workstation multiprocessing tool [6].

5. Results

Benchmarks were performed on a Sun Ultra Enterprise
4000 with 8 UltraSPARC-II processors running at 336
MHz. Solaris 2.6 was the operating system used, with
threads executing in the “real-time” class. All results are
determined as the average time over 10 trials to calculate
about 2.6 seconds of data. Care was taken to prevent the
caching of incoming data before the benchmarks were per-
formed, so that artificially elevated results would not occur.

Beamforming kernel performance and scalability was
measured using traditional thread pools. Fig. 8 plots the
results for the horizontal and vertical beamforming kernels.

The execution times (dotted) are used to calculate the
useful beamforming MFLOPS (solid). Despite index look-
ups, the horizontal beamforming kernel routine can keep
the utilization of the floating-point units at 61%, i.e. 1.22
floating-point operations are performed per clock cycle.
The performance of horizontal beamforming kernel scales
fairly well with additional threads. The real-time goal of
beamforming at 1200 MFLOPS is met with 4 threads,
where over 385 MFLOPS on each of 4 (336 MHz) proces-
sors is delivered.

Fig. 8: Beamforming kernel results

Fig. 6: Beamformer block diagram

Vertical
Beamformer

1200
MFLOPSVertical

Beamformer
1200

MFLOPSVertical
Beamformer

1200
MFLOPS

Vertical
Beamformer

500
MFLOPS

Sensors

Group 0

Group 1

Group 2

Group 3

stave
data

element
data

40 MB/sec each

fan 0

fan 1

fan 2

beam
data

Fig. 7: Coefficients for one beam

Coefficients for a beam pointing 20° off axis

Stave number

S
am

pl
e

nu
m

be
r

10 20 30 40 50 60 70 80

5

10

15

20

25

30

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

threads in thread pool

se
co

nd
s

(d
ot

te
d

lin
es

)

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000
Execution time and MFLOPS vs CPUs

M
F

LO
P

S
 (

so
lid

 li
ne

s)

Horizontal

Vertical

Because the vertical beamformer accounts for less than
12% of the system’s required computation, less time has
been spent in its optimization. The vertical beamformer
performance is currently unimpressive at 135 MFLOPS,
which is only 20% of the peak performance rate of the
floating-point units. The real performance problem lies in
the conversion to floating-point format, which currently
requires about 5 integer operations per point. Although the
real-time goal of 500 MFLOPS is nearly met with 4
threads, the scaling performance is currently rather disap-
pointing. Clearly more optimization effort is needed on the
vertical beamformer implementation.

We compare the performance of the full Process Net-
work beamforming system depicted in Fig. 6 with the
thread-pool implementations. The thread-pool beamform-
ing system loads all input data into memory, allocates
memory for results, and calculates from memory to mem-
ory using pools of 8 threads. This batch-mode system uses
over 800 Mb of memory for data alone. Not surprisingly,
the time taken to execute the full benchmark is roughly the
same as the sum of the times for a vertical beamformer and
3 horizontal beamformers using 8 threads.

The Process Network beamformer achieves within 1%
of the same result, taking just over 5 seconds to process 2.6
seconds of data. This is slightly better than half of the real-
time goal. The Process Network system has distinct advan-
tages. Because it is “stream” oriented, it has lower latency
and uses 25% less memory. With real-time input and out-
put devices, this memory savings would be more dramatic.
All Process Network nodes are operating all of the time, as
the flow of data permits, so the Process Network beam-
former program is automatically scaled by the operating
system according to the number of available processors.

Fig. 9 shows scaling results for the Process Network
beamformer on a varying number of CPUs. This test was
performed by disabling CPUs in the 8-processor machine.
The beamformer scales fairly well from 2 to 8 processors.
Based on these benchmarks, real-time operation of this
Process Network beamforming system on 16 CPUs is an

attainable goal. Better optimization of the vertical beam-
former kernel routine is required, and performance losses
due to additional scaling overhead must also be reduced.

6. Conclusion

We implement computationally intensive sonar beam-
forming algorithms using Process Networks and Pthreads
under the Sun Solaris operating system. The Process Net-
work model provides for correctness and determinacy, and
can guarantee execution in bounded memory. This model is
excellent for digital signal processing systems, and cap-
tures their concurrency and parallelism. The Process Net-
work implementation provided compares favorably with
the more traditional thread-pool model, and provides a
low-overhead, high-performance, scalable framework.

Although further optimization is required in the vertical
beamforming kernel, it is feasible for this high-resolution
multi-fan interpolation beamformer to execute in real-time
on a Unix workstation. This 4 GFLOP system would
require 16 UltraSPARC-II processors running at 336 MHz.

In this implementation, the workstation is both the
development platform and the target architecture, and we
can deploy the computer-aided design tools along with the
design. Implementing this beamforming system on a com-
mercial Unix workstation allows real-time performance at
a substantial savings in development cost and time when
compared to a custom hardware solution.

References

[1] G. Kahn, “The semantics of a simple language for parallel
programming.”

Info. Proc.

, pp. 471-475, Aug. 1974.
[2] G. Kahn and D. B. MacQueen, “Coroutines and networks of

parallel processes.”

Info. Proc.

, pp. 993-998, Aug. 1977.
[3] T. M. Parks, “Bounded Scheduling of Process Networks.”

Technical Report UCB/ERL-95-105

, Ph.D. Dissertation,
EECS Dept., University of California Berkeley, Berkeley,
CA 94720-1770, Dec. 1995.

[4] R. G. Pridham and R. A. Mucci, “A Novel Approach to Digi-
tal Beamforming.”

Journal Acoustical Society of America

,
vol. 63, no. 2, pp. 425-434, Feb. 1978.

[5] R. A. Mucci, “A Comparison of Efficient Beamforming
Algorithms.”

IEEE Trans. on Acoustics, Speech, and Signal
Processing

, vol. ASSP-32, no. 3, pp. 548-558, June 1984.
[6] B. Nichols, D. Buttlar, and J. P. Farrell,

Pthreads Program-
ming

. O’Reilly and Associates, Sebastopol, CA, 1996.
[7] G. Allen,

Real-Time Sonar Beamforming on a Symmetric
Multiprocessing UNIX Workstation Using Process Networks
and POSIX Pthreads

. Master’s Report, Dept. of Electrical
and Computer Engineering, The University of Texas at Aus-
tin, Austin, TX 78712-1084, http://www.ece.utexas.edu/
~allen/MSReport/, Aug. 1998.

Fig. 9: Process Network beamformer
scaling

2 3 4 5 6 7 8
0

5

10

15

20

25

CPUs

se
co

nd
s

(d
ot

te
d

lin
es

)

2 3 4 5 6 7 8
0

5

10

15

20

25

2 3 4 5 6 7 8
0

500

1000

1500

2000

2500
Execution time and MFLOPS vs CPUs

M
F

LO
P

S
 (

so
lid

 li
ne

s)

