
Real-Time Sonar Beamforming on a
Unix Workstation using Process
Networks and POSIX Threads

Gregory E. Allen 1,2

Brian L. Evans 1
David C. Schanbacher 1

1 Embedded Signal Processing Laboratory
The University of Texas at Austin

http://www.ece.utexas.edu/~allen/

2

Motivation

• Beamforming is computationally intensive (GFLOPS).

• Traditionally limited to expensive custom hardware.

• Real-time software implementation on a workstation.

2

• Multi-processor workstations.

• Real-time threads supported by modern operating systems.

• Native signal processing.

Objectives

• Implement a 4 GFLOP sonar beamformer in software.

3

• Evaluate the performance of sonar beamforming algorithms.

• Capture parallelism and guarantee determinate bounded execution.

• Use lightweight threads on a multiprocessor workstation.

• Assess feasibility of replacing a real-time custom
hardware beamformer with a Unix workstation.

Time-Domain Beamforming
• Delay and sum weighted sensor outputs.

• Geometrically project the sensor elements onto a line
to compute the time delays.

b(t) = α i xi(t–τi)Σ

i = 1

M

b(t) beam outputi

xi(t) ith sensor output

τi ith sensor delay

αi ith sensor weight

4

-20 -15 -10 -5 0 5 10 15 20

-5

0

5

10

15

20

Projection for a beam pointing 20° off axis

x position, inches

y
po

si
tio

n,
 in

ch
es

sensor element
projected sensor element

Interpolation Beamforming

• Quantized time delays perturb beam pattern.

• Sample at just above the Nyquist rate.

• Interpolate to obtain desired time-delay resolution.

5

A/D Interpolate N1δ

A/D Interpolate NMδ
Σ b[n]

•
•

•
•

•
•

•
•

Sensor Array Weights Digital Interpolation Beamformer

Sample at
interval ∆

Interpolate up to
interval δ = ∆/L

Time delay
at interval δα1

αM

Interpolation Beamforming
• Modeled as a sparse FIR filter:

• M total sensors in array
• S sensors used to calculate beam
• D maximum geometry delay
• P points for interpolation filter
• B number of beams calculated

Coefficient filter length:

(80)
(50)
(31)
(2)
(61)

(2560)
Non-zero coefficients: (100)

K = (D+P-1) M
C = P S
Sparsity = 1-C/K (96%)
MACs per sample = B C (6100)

Incoming Data

(1 by K) (K by B)

Beam Data
(1 sample)

(1 by B)

•••
Beam

1
coefs

Beam
B

coefs

6

Interpolation Beamformer

• Performed in floating-point to preserve dynamic range.

• Generate sparse FIR beam coefficients using Matlab.

• 2560-point sparse FIR
filter viewed in 2-D.

• Zero-valued coefficients
are white, non-zero
coefficients are black.

• Array shape is visible
in beam coefficients.

7

Coefficients for a beam pointing 20° off axis

Stave number

S
am

pl
e

nu
m

be
r

10 20 30 40 50 60 70 80

5

10

15

20

25

30

Vertical Beamforming

Multiple vertical transducers
for every horizontal position.

• Each vertical sensor column is combined into a stave.

8

stave

• No time delay or interpolation is required.

• Staves are calculated by a simple dot product.

• Integer-to-float conversion must be performed.

• Output data must be interleaved.

System Block Diagram
• Vertical beamformer forms 3 sets of 80 staves from 10

vertical elements each.

• Each horizontal beamformer forms 61 beams from the
80 staves, using a two-point interpolation filter.

sensor
data

sensor
data

sensor
data

sensor
data

Element data

Three-fan
Vertical

Beamformer

Stave data

Digital
Interpolation
Beamformer

Digital
Interpolation
Beamformer

Digital
Interpolation
Beamformer

40 MB/sec
each

500
MFLOPS

1200
MFLOPS

each

Fan 0
Beams

Fan 1
Beams

Fan 2
Beams

9

Formal Design Methodology

• The Process Network model [Kahn, 1974].

• Superset of dataflow models of computation.

• Captures concurrency and parallelism.

• Provides correctness.

• Guarantees determinate execution of the program.

10

The Process Network Model
• A program is represented as a directed graph

• Each node represents an independent process.
• Each edge represents a one-way FIFO queue of data.

A
P

B

• A node may have any number of input or output
edges, and may communicate only via these edges.

• A node suspends execution when it tries to consume
data from an empty queue (blocking reads).

• A node is never suspended for producing, so queues
can grow without bound (non-blocking writes).

11

Bounded Scheduling

• Infinitely large queues cannot be implemented.

• The following scheduling policy will execute the
program in bounded memory if it is possible [Parks, 1995]

1. Block when attempting to read from an empty queue.

2. Block when attempting to write to a full queue.

3. On artificial deadlock, increase the capacity of the smallest full
queue until the producer associated with it can fire.

• Fits the thread model of concurrent programming.

12

Process Network Implementation

Pthread Pthread

• Implemented in C++ using POSIX Pthreads.

• Each node corresponds to a thread.

• Low-overhead, high-performance, scalable.

• Granularity larger than a thread context switch.

• Symmetric multiprocessing operating system
dynamically schedules threads.

• Efficient utilization of multiple processors.
13

• Nodes operate directly on queue memory, avoiding
unnecessary copying.

• Queues use mirroring to keep data contiguous.

Process Network Queues

Mirror regionQueue data region

Mirrored data

14

• Compensates for the lack of circular address buffers.

• Queues tradeoff memory usage for overhead.

• Virtual memory manager maintains data circularity.

Exploiting Parallelism

divide by beam divide by time

• Strategies for high performance on a workstation

<- space ->

<- tim
e ->

<- space ->

<- tim
e ->

• Throughput is more importatant than memory usage or latency.

• Keep kernel calculations smaller than the cache.

• Calculate as much as possible while the data is in cache.

15

Latency
Memory Usage
Cache Usage

low
low

poor

high
high
good

Stylepartial batch
Target workstationembedded

vs.

System Implementation
• Vertical beamformer forms 3 sets of 80 staves from 10

vertical elements each.

• Each horizontal beamformer forms 61 beams from the
80 staves, using a two-point interpolation filter.

sensor
data

sensor
data

sensor
data

sensor
data

Element data

Three-fan
Vertical

Beamformer

Stave data

Digital
Interpolation
Beamformer

Digital
Interpolation
Beamformer

Digital
Interpolation
Beamformer

40 MB/sec
each

500
MFLOPS

1200
MFLOPS

each

Fan 0
Beams

Fan 1
Beams

Fan 2
Beams

16

Integration with Process Networks

• A single CPU cannot achieve real-time performance.

• A horizontal beamformer node manages multiple
worker nodes.

Horizontal
Beamformer

Node

Worker
Nodes

17

• The number of worker
nodes is set as performance
requirements dictate.

• Similar to the traditional thread pool model.

Kernel Performance Results
• Ten trial mean execution time for 2.6 seconds of data.

• Sun Ultra Enterprise 4000 with 8 UltraSPARC-II
CPUs at 336 MHz, running Solaris 2.6.

Execution time and MFLOPS vs CPUs

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

threads in thread pool

se
co

nd
s

(d
ot

te
d

lin
es

)

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

se
co

nd
s

(d
ot

te
d

lin
es

)

1 2 3 4 5 6 7 84
0

500

1000

1500

2000

2500

3000

M
F

LO
P

S
 (

so
lid

 li
ne

s)

Horizontal

Vertical

18

Horizontal
Vertical

kernel performance scalability

good at 1.22 FLOPS per cycle good
poorpoor at 0.40 FLOPS per cycle

System Performance Results

• Process network and thread
pool results are within 1%,
overhead is small.

• Process network uses
25% less memory with
lower latency.

• Scalability is evaluated
by disabling CPUs.

• Process network scalability is good.

• Will continue to scale as more CPUs are added.

2 3 4 5 6 7 8
0

5

10

15

20

25

CPUs

se
co

nd
s

(d
ot

te
d

lin
es

)

2 3 4 5 6 7 8
0

500

1000

1500

2000

2500
Execution time and MFLOPS vs CPUs

M
F

LO
P

S
 (

so
lid

 li
ne

s)

19

thread pool
process network

Type Seconds

5.053
5.024

MFLOPS

2159.0
2171.5

Conclusion

• Implemented a 4 GFLOP software sonar beamformer.

• Divide the computation by time and not by beam.

• Use the Process Network model of computation.

• POSIX Pthreads and a symmetric multiprocessing workstation.

20

• This 4 GFLOP beamforming system could execute in
real time with 16 UltraSPARC-II CPUs at 336 MHz.

• We achieve real-time beamforming at a substantial
savings in development cost and time.

