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Motivation

• Beamforming is computationally intensive (GFLOPS).

• Traditionally limited to expensive custom hardware.

• Real-time software implementation on a workstation.
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• Multi-processor workstations.

• Real-time threads supported by modern operating systems.

• Native signal processing.



Objectives

• Implement a 4 GFLOP sonar beamformer in software.  
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• Evaluate the performance of sonar beamforming algorithms.

• Capture parallelism and guarantee determinate bounded execution.

• Use lightweight threads on a multiprocessor workstation.

• Assess feasibility of replacing a real-time custom 
hardware beamformer with a Unix workstation.



Time-Domain Beamforming
• Delay and sum weighted sensor outputs.

• Geometrically project the sensor elements onto a line 
to compute the time delays. 

  
b(t) = α i xi(t–τi)Σ

i = 1

M

b(t) beam outputi

xi(t) ith sensor output

τi ith sensor delay

αi ith sensor weight
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Interpolation Beamforming

• Quantized time delays perturb beam pattern.

• Sample at just above the Nyquist rate.

• Interpolate to obtain desired time-delay resolution.
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Interpolation Beamforming
• Modeled as a sparse FIR filter:

• M total sensors in array
• S sensors used to calculate beam
• D maximum geometry delay
• P points for interpolation filter
• B number of beams calculated

Coefficient filter length:

(80)
(50)
(31)
(2)
(61)

(2560)
Non-zero coefficients: (100)

K = (D+P-1) M
C = P S
Sparsity = 1-C/K (96%)
MACs per sample = B C (6100)
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Interpolation Beamformer

• Performed in floating-point to preserve dynamic range.

• Generate sparse FIR beam coefficients using Matlab.

• 2560-point sparse FIR 
filter viewed in 2-D.

• Zero-valued coefficients 
are white, non-zero 
coefficients are black.

• Array shape is visible 
in beam coefficients.
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Vertical Beamforming

Multiple vertical  transducers 
for every horizontal position.

• Each vertical sensor column is combined into a stave.
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stave

• No time delay or interpolation is required.

• Staves are calculated by a simple dot product.

• Integer-to-float conversion must be performed.

• Output data must be interleaved. 



System Block Diagram
• Vertical beamformer forms 3 sets of 80 staves from 10 

vertical elements each.

• Each horizontal beamformer forms 61 beams from the 
80 staves, using a two-point interpolation filter.
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Formal Design Methodology

• The Process Network model [Kahn, 1974].

• Superset of dataflow models of computation.

• Captures concurrency and parallelism.

• Provides correctness.

• Guarantees determinate execution of the program.
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The Process Network Model
• A program is represented as a directed graph

• Each node represents an independent process.
• Each edge represents a one-way FIFO queue of data.

A
P

B

• A node may have any number of input or output 
edges, and may communicate only via these edges.

• A node suspends execution when it tries to consume 
data from an empty queue (blocking reads).

• A node is never suspended for producing, so queues 
can grow without bound (non-blocking writes).
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Bounded Scheduling

• Infinitely large queues cannot be implemented.

• The following scheduling policy will execute the 
program in bounded memory if it is possible [Parks, 1995]

1. Block when attempting to read from an empty queue.

2. Block when attempting to write to a full queue.

3. On artificial deadlock, increase the capacity of the smallest full 
queue until the producer associated with it can fire.

• Fits the thread model of concurrent programming. 
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Process Network Implementation

Pthread Pthread

• Implemented in C++ using POSIX Pthreads.

• Each node corresponds to a thread.

• Low-overhead, high-performance, scalable.

• Granularity larger than a thread context switch.

• Symmetric multiprocessing operating system 
dynamically schedules threads.

• Efficient utilization of multiple processors.
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• Nodes operate directly on queue memory, avoiding 
unnecessary copying.

• Queues use mirroring to keep data contiguous.

Process Network Queues

Mirror regionQueue data region

Mirrored data
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• Compensates for the lack of circular address buffers.

• Queues tradeoff memory usage for overhead.

• Virtual memory manager maintains data circularity.



Exploiting Parallelism

divide by beam divide by time

• Strategies for high performance on a workstation

<- space ->

<- tim
e ->

<- space ->

<- tim
e ->

• Throughput is more importatant than memory usage or latency.

• Keep kernel calculations smaller than the cache.

• Calculate as much as possible while the data is in cache.
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System Implementation
• Vertical beamformer forms 3 sets of 80 staves from 10 

vertical elements each.

• Each horizontal beamformer forms 61 beams from the 
80 staves, using a two-point interpolation filter.
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Integration with Process Networks

• A single CPU cannot achieve real-time performance.

• A horizontal beamformer node manages multiple 
worker nodes.

Horizontal
Beamformer

Node

Worker
Nodes
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• The number of worker 
nodes is set as performance 
requirements dictate.

• Similar to the traditional thread pool model.



Kernel Performance Results
• Ten trial mean execution time for 2.6 seconds of data.

• Sun Ultra Enterprise 4000 with 8 UltraSPARC-II 
CPUs at 336 MHz, running Solaris 2.6.

Execution time and MFLOPS vs CPUs
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System Performance Results

• Process network and thread 
pool results are within 1%, 
overhead is small.

• Process network uses 
25% less memory with 
lower latency.

• Scalability is evaluated 
by disabling CPUs.

• Process network scalability is good.

• Will continue to scale as more CPUs are added.
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thread pool
process network

Type Seconds

5.053
5.024

MFLOPS

2159.0
2171.5



Conclusion

• Implemented a 4 GFLOP software sonar beamformer.

• Divide the computation by time and not by beam.

• Use the Process Network model of computation.

• POSIX Pthreads and a symmetric multiprocessing workstation.
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• This 4 GFLOP beamforming system could execute in 
real time with 16 UltraSPARC-II CPUs at 336 MHz.

• We achieve real-time beamforming at a substantial 
savings in development cost and time. 


