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ABSTRACT

We study the problem of estimating signal parameters
from a noisy data sequence containing superimposed
damped sinusoids. We propose three novel methods by
combining the reduced-rank Hankel approximation and
the Matrix Pencil method. We demonstrate that two
of the proposed methods signi�cantly outperform both
the original Matrix Pencil method and the modi�ed
Kumaresan-Tufts method, especially at low signal-to-
noise ratio.

1. INTRODUCTION

Estimating signal parameters from a noisy superim-
posed damped sinusoidal data sequence has found many
diverse applications, such as determination of direction-
of-arrival plane waves at a uniform linear array of sen-
sors and estimation of Doppler frequencies [1{6]. An
e�ective way to combat observation noise and obtain

accurate estimates is to exploit the properties possessed
by the unknown signal. For a data sequence consist-
ing of superimposed damped sinusoids, the data matrix
in the corresponding matrix prediction equation enjoys
both a rank-de�cient property and a Hankel structure.

The Kumaresan-Tufts (KT) method exploits the
structure of the backward linear prediction equations
satis�ed by the underlying signal to estimate signal pa-
rameters, and applies a reduced-rank approximation
based on singular value decomposition (SVD) to mit-
igate noise e�ects [1]. However, such an approxima-
tion takes into account only the rank-de�cient property
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of the signal matrix and does not preserve its Han-
kel structure. As a consequence, the resulting perfor-
mance breaks down at low signal-to-noise ratio (SNR).
Hua and Sarkar developed the Matrix Pencil (MP)
method [2] which is an e�cient method that achieves
better estimation performance than the KT method.
It exploits the structure of a matrix pencil of the un-
derlying signal and also makes use of the SVD-based
reduced-rank approximation to suppress the noise. Like
the KT method, the MP method ignores the Hankel
structure of the matrix pencil and su�ers from a degra-
dation of estimation accuracy at low SNR. Cadzow pro-
posed a signal enhancement algorithm for estimating
the signal parameters of undamped sinusoids [3], [4],
which exploits both the rank-de�cient and Toeplitz-
Hankel properties of the signal matrix. Such an al-
gorithm was extended to improve the KT method for
damped sinusoids, where an iterative reduced-rank Han-
kel approximation (RRHA) was developed [4], [5] and
shown to yield better performance than the original KT
method.

We apply the concept of RRHA to improve the MP
method. We propose three novel methods by combin-
ing the RRHA and original MP method, and compare
them with the original MP method and the modi�ed
KT (MKT) method proposed in [4] and [5]. We demon-
strate that two of the proposed methods outperform
both the original MP method and the MKT method in
terms of estimation accuracy.

Section 2 reviews the MP method and RRHA con-
cept. Section 3 presents three RRHA-based modi�ed
MP methods. Razavilar, Li, and Liu [6] introduce a
method similar to our modi�ed matrix pencil method
#3 described in Section 3.3. However, their method
can be used only for square data matrices whereas our
three new methods can be applied to rectangular data
matrices. Section 4 demonstrates our simulation re-



sults and Section 5 concludes the paper.

2. BACKGROUND

We consider the problem of estimating signal parame-
ters from a noisy observed data sequence of K samples

rk = sk + nk;

where the noise term nk is a complex white Gaussian
random process, and the noise-free signal sk is given by

sk =

MX
m=1

ame
(�dm+j2�fm)k

for k = 0; 1; : : : ;K � 1, where M is the number of ex-
ponentially damped sinusoids, and the am, dm, and
fm terms represent the complex amplitudes, damping
factors, and frequencies, respectively, which are the un-
known signal parameters to be estimated. The set of
amplitude terms famg can be estimated by solving a
linear least squares problem if all of the other param-
eters are known. The parameter M can be estimated
via various methods (e.g., [1] and [7]). In this paper, we
shall focus on estimation of the fdmg and ffmg terms.

2.1. Matrix Pencil Method

De�ne subscripted vectors as

rl = [r�l r
�
l+1 : : : r�K�L+l�1]

T

for l = 0; 1; : : : ; L where the superscripts * and T de-
note the complex conjugate and matrix transpose, re-
spectively. We form three data matrices from the ob-
served data sequence frkg

K�1
k=0 :

R = [r0 r1 : : : rL](K�L)�(L+1)
R
0 = [r0 r1 : : : rL�1](K�L)�L

R
1 = [r1 r2 : : : rL](K�L)�L

L is called the pencil parameter and R is referred to as
the master matrix. The signal matrices S, S0, and S1

are de�ned similarly from fskg
K�1
k=0 . All three matrices

S, S0, and S
1 have rank M and Hankel structure.

fedm�j2�fmgMm=1 is the set of M non-zero eigenvalues
of (S0)yS1, where y denotes the pseudoinverse [2].

In the presence of noise, the matrices R, R0, and
R

1 are full rank but still have Hankel structure. Hua
and Sarkar [2] perform an SVD and its rank-M trun-
cation of the M largest singular values on the noisy
data matrices R0 and R1 to reduce the e�ect of noise.
For a given rank-L matrix X, we de�ne the rank-M
(M � L) approximation operator L as

LfXg =

MX
m=1

�mumv
H
m (1)

where f�1; �2; � � � ; �Mg is the set of the M largest sin-
gular values of X, the um and vm terms are the cor-
responding left and right singular vectors, respectively,
and the superscript H is the matrix conjugate trans-
pose. We compute LfRig, which is a rank-M approx-
imation of Si for i = 0; 1. Then, we estimate fdmg
and ffmg by computing the M non-zero eigenvalues of
matrix (LfR0g)yLfR1g. The MP method follows:

1. Compute eS0
= LfR0g

2. Compute eS1
= LfR1g

3. Compute the M non-zero eigenvalues of (eS0
)yeS1

.

In general, the rank-M matrices LfR0g and LfR1g do
not have Hankel structure, which may result in highly
biased estimates of the parameters, esp. at low SNR.

2.2. Reduced-Rank Hankel Approximation

For a given P � Q matrix X, we de�ne the Hankel
approximation operator H as

Y = HfXg

in which the (p; q)-th element of Y is given by

yp;q =
1

j�p+qj

X
(p0;q0)2�p+q

xp0;q0 (2)

for p = 0; 1; : : : ; P � 1, and q = 0; 1; : : : ; Q � 1, where
�t denotes the set of indices corresponding to the tth

anti-diagonal in a matrix, i.e., �t = f(p0; q0) : 0 � p0 �
P � 1; 0 � q0 � Q � 1; p0 + q0 = tg, and j�tj denotes
the cardinality of the set �t. In general, the operator
L does not preserve the Hankel property, and the op-
erator H does not preserve the rank-de�cient property.
Since there is a one-to-one correspondence between a
data sequence consisting of superimposed damped si-
nusoids and a rank-de�cient Hankel matrix [5], it is
desirable to maintain both the rank-de�cient and Han-
kel properties of the data matrix. Thus, we de�ne J
to be the reduced-rank Hankel approximation (RRHA)
operator that generates a matrix having both the rank-
de�cient and Hankel properties. Since no analytic form
for the operator J exists to date, an iterative algorithm
is used to approximate J [5]:

J fXg = (HL)1fXg = lim
L!1

(HL)LfXg

= lim
L!1

(HL � � � (HL| {z }
L

(HLfXg)) � � �):

Cadzow shows that such an iteration converges for the
data matrixR associated with the superimposed damped
sinusoids buried in noise [3]. Theoretically, the matrix



J fRg possesses both the Hankel and rank-de�cient
properties and results in a better approximation of S
than the reduced-rank but non-Hankel matrix LfRg.

However, in reality only a �nite number of itera-
tions can be implemented (thus, a stopping criterion is
needed in practice) so that the resulting matrix is either
roughly rank-de�cient or roughly Hankel. Usually, we
choose to force the matrix to be exactly rank-de�cient
and approximately Hankel in order to make the subse-
quent steps (e.g., �nding non-zero eigenvalues) easier.

3. MODIFIED MATRIX PENCIL

METHODS

Since three matrices, S, S0, and S1, are involved in
the MP method, it would be desirable to make use of
rank-de�cient and Hankel properties of all three matri-
ces. Next, we shall develop three modi�ed MPmethods
classi�ed by the properties they exploit.

3.1. Method Matrix Pencil Method 1 (MMP1)

A straightforward modi�cation of the original matrix
pencil method is to replace the reduced-rank approxi-
mation ofR0 andR1 by the RRHA of the two matrices
so that the Hankel structure of S0 and S1 is exploited,
too. Fig. 1 gives the steps to implement this method.

According to Theorem 1 in [5], we infer that during
each iteration of the RRHA, the preservation of the
Hankel structure leads to a better approximation of the
true signal matrices S0 and S1; i.e., in the lth iteration,

k(HL)lfRig � SikF � kL(HL)l�1fRig � SikF (3)

for i = 0; 1, where k � kF denotes the Frobenius norm:

kXkF = (
PP�1

p=0

PQ�1
q=0 jxp;q j

2)1=2 for a P � Q matrix
X. Like the original MP method, a disadvantage of the
MMP1 method is that, since the two matrices R0 and
R

1 are processed independently, the properties of the

matrix S are ignored. Therefore, in general, eS0
and

eS1
in MMP1 method do not correspond to any valid

reduced-rank and Hankel approximation of S. This
drawback can yield signi�cantly biased estimates when

the two signals corresponding to eS0
and eS1

are very
di�erent from each other.

1. Compute eS0
= J fR0g

2. Compute eS1
= J fR1g

3. Compute the M non-zero eigenvalues of (eS0
)yeS1

Figure 1: Modi�ed Matrix Pencil Method 1 (MMP1)

3.2. Modi�edMatrix Pencil Method 2 (MMP2)

To avoid the highly biased estimates caused by the in-
dependent processing of R0 and R1, we consider the
rank-de�cient property and/or the Hankel property pos-
sessed by S as well; i.e., we need to process the two
matrices R0 and R1 jointly. The key idea is to mod-
ify the RRHA operator by performing the Hankel op-
erator on the two rank-reduced matrices simultane-

ously rather than individually so that the correspond-
ing master matrix will also possess the Hankel struc-
ture. We extend the operator H to a pair of matrices
fY 0;Y 1g = HfX0;X1g. The elements of Y 0 and Y 1

are

y0p;q =

P
(p0;q0)2�p+q

x0p0;q0 +
P

(p0;q0)2�p+q�1
x1p0;q0

j�p+q j+ j�p+q�1j

y1p;q =

P
(p0;q0)2�p+q+1

x0p0;q0 +
P

(p0;q0)2�p+q
x1p0;q0

j�p+q+1j+ j�p+qj

for p = 0; 1; : : : ; P � 1, and q = 0; 1; : : : ; Q � 1. We
summarize the resulting \MMP2" method in Figure 2:

The proof of the convergence of such an iterative al-
gorithm remains open. However, it always approxi-
mately converges within a few iterations in our simula-
tions over a wide range of SNRs. Each iteration better
approximates S0 and S1. In the lth iteration,

1X
i=0

k(HL)lfRig�Sik2F �

1X
i=0

kL(HL)l�1fRig�Sik2F

(4)
Even though the improvement in the matrix approx-
imation described in (4) seems weaker than the one
given in (3), we expect that the MMP2 method yields
more accurate estimates of signal parameters than the
MMP1 method, especially at low SNR. The better per-
formance results because the MMP2 method makes use
of the relationship between S0 and S1.

3.3. Modi�edMatrix Pencil Method 3 (MMP3)

Another way to exploit the properties of the three ma-
trices S, S0, and S1 jointly, is to perform the RRHA

1. Let eS0
= R

0 and eS1
= R

1

2. Compute fbS0
; bS1

g = HfeS0
; eS1

g

3. Compute eS0
= LfbS0

g

4. Compute eS1
= LfbS1

g

5. Go to Step 2 unless the stop criterion is satis�ed

6. Compute the M non-zero eigenvalues of (eS0
)yeS1

.

Figure 2: Modi�ed Matrix Pencil Method 2 (MMP2)



1. Compute bS = J fRg

2. Form bS0
and bS1

from bS
3. Compute eS0

= LfbS0
g

4. Compute eS1
= LfbS1

g

5. Compute the M non-zero eigenvalues of (eS0
)yeS1

.

Figure 3: Modi�ed Matrix Pencil Method #3 (MMP3)

on the master data matrix R directly. Since in theory
there exists a unique exponential data sequence corre-
sponding to a rank-de�cient Hankel matrix bS, the ma-
trices bS0

and bS1
are both rank-de�cient and Hankel,

too. Therefore, in theory, the two properties are satis-
�ed by all the three matrices. We call such a method
the \MMP3" method, which may be viewed as ap-
plying a preprocessing procedure to the original MP
method. It can be implemented according to Figure 3:

The MMP3 method achieves a better approxima-
tion of the true master matrix S; i.e., in the lth itera-
tion,

k(HL)lfRg � SkF � kL(HL)l�1fRg � SkF : (5)

Since in practice bS is only approximately Hankel, bS0

and bS1
are neither exactly rank-de�cient nor exactly

Hankel. However, because of the reduced-rank opera-
tor embedded in the subsequent MP method, the rank-

de�ciency of bS0
and bS1

can be eventually achieved.
Razavilar, Li, and Liu [6] propose such a method. How-
ever, their method requires the data matrices to be
square in order to obtain the best performance. This
requirement is not necessary since Hua and Sarkar point
out that any values satisfying K=3 � L � 2K=3 are
good choices [2].

4. SIMULATION RESULTS

In our computer simulations, we use the same example
as the one in [5] to compare the estimation performance
of the MKT method, the MP method, and our three
modi�ed MP methods. We choose M = 2, K = 25,
L = 17, a1 = a2 = 1, d1 = 0:2, d2 = 0:1, f1 = 0:42,
and f2 = 0:52. The SNR in dB is de�ned as SNR =
�10 log10(2�

2
n), where �2n is the variance of the zero-

mean complex white Gaussian noise process nk. We
use mean square error (MSE) to assess the estimation
accuracy of the parameters d1, d2, f1, and f2. From
each parameter estimate, Figure 4 shows the MSE vs.
SNR plots of the �ve methods as well as the Cramer-
Rao Bound (CRB). Each data point is measured based
on 500 independent runs of the random noise process.

From Figure 4, all �ve methods yield about the
same results at high SNRs, but quite di�erent results
at low SNRs. The MMP1 method achieves comparable
performance in estimating the frequencies as the MP
method, and performs worse in estimating the damp-
ing factors. This may be caused by the negligence of
the rank-de�cient and Hankel properties possessed by
the master matrix. Both MMP2 and MMP3 methods
performed signi�cantly better than the MP method in
estimating f2, d1, and d2, and as well as the latter in
estimating f1. This is consistent with our analysis. On
the other hand, both the MMP2 and MMP3 methods
achieve performance comparable to the MKT method
in terms of the estimation accuracy of the damping fac-
tors, and signi�cantly outperform the MKT method in
the estimation accuracy of the frequencies.

5. CONCLUSIONS

We have presented a comparative study of three modi-
�ed versions of the MP method. We conclude that both
the MMP2 and MMP3 methods achieve signi�cantly
better performance than the original MP method, and
also outperform the MKT method. The improvement
in performance increases as SNR decreases.

In addition, our modi�ed MP methods can be easily
extended to the forward-and-backward MP method [2]
for estimating parameters of undamped sinusoids. The
e�ect of noise in the data matrices can be attenuated
by using a reduced-rank joint Toeplitz-Hankel approxi-

mation, which was developed in [4] for improving the
Tufts-Kumaresan method [8].

Appendix

Let ~S
i
= L(HL)l�1fRig and bSi

= (HL)lfRig, for i = 0; 1.

We consider the approximation of a pair of diagonals in S0

and S1 given by fs0p;q : (p; q) 2 �zg and fs1p;q : (p; q) 2
�z�1g, respectively,

X
(p;q)2�z

js�z � es0p;qj2 +
X

(p;q)2�z�1

js�z � es1p;qj2

=
X

(p;q)2�z

(js�z � bs0p;qj2 + jbs0p;q � es0p;qj2

�2<f(s�z � bs0p;q)(bs0p;q � es0p;q)�g)
+

X
(p;q)2�z�1

(js�z � bs1p;qj2 + jbs1p;q � es1p;qj2

�2<f(s�z � bs1p;q)(bs1p;q � es1p;q)�g)
=

X
(p;q)2�z

�
js�z � bs0p;qj2 + jbs0p;q � es0p;qj2�

+
X

(p;q)2�z�1

�
js�z � bs1p;qj2 + jbs1p;q � es1p;qj2�
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Figure 4: Performance of the �ve methods based on 500 trials in estimating: (a) d1, (b) d2, (c) f1, and (d) f2.

�
X

(p;q)2�z

js�z � bs0p;qj2 +
X

(p;q)2�z�1

js�z � bs1p;qj2:

Considering all the corresponding pairs of diagonals in S0

and S1, we have proved (4).
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