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ABSTRACT

We present a fast, non-iterative technique for producing
grayscale images from error di�used and dithered halftones.
The �rst stage of the algorithm consists of a Gaussian �l-
ter and a median �lter, while the second stage consists
of a bandpass �lter, a thresholding operation, and a me-
dian �lter. The second stage enhances the rendering of
edges in the inverse halftone. We compare our algorithm
to the best reported statistical smoothing, wavelet, and
Bayesian algorithms to show that it delivers comparable
PSNR and subjective quality at a fraction of the computa-
tion and memory requirements. For error di�used halftones,
our technique is seven times faster than the MAP estima-
tion method and 75 times faster than the wavelet method.
For dithered halftones, our technique is 200 times faster
than the MAP estimation method. A C implementation of
the algorithm is available at http://www.ece.utexas.edu/
~bevans/projects/inverseHalftoning.html.

1. INTRODUCTION

Halftoning converts a grayscale image to a binary image so
that the binary image looks like the original when viewed
from a distance. Blurring a halftone with a Gaussian low-
pass �lter is one way to recover a grayscale image. Lowpass
�ltering reduces the quantization noise incurred in halfton-
ing, but also destroys high frequency edge and texture in-
formation. Blurring belongs to a class of algorithms that
treats inverse halftoning as a denoising problem. The class
includes statistical smoothing [1] and a wavelet approach
[2]. The wavelet scheme, which reports the best PSNR re-
sults for error di�used halftones, is a single-pass algorithm
that does not assume knowledge of the halftoning kernel.
It uses at least 17 large �lters and requires 9 
oating-point
copies of the image to be stored in memory; it is therefore
impractical for use in low-cost devices.

A second class of algorithms, which includes the kernel
estimation method [1], uses a �ltering approach to obtain an
initial estimate of the inverse halftone. It then successively
re�nes this estimate with projections using an estimated
halftoning kernel, obtained with a modi�ed LMS algorithm.
Application of MAP projections along with wavelet denois-
ing [2] is another technique that falls into this category.
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Figure 1: Block diagram of the proposed algorithm. The
block labeled �1 is a Gaussian lowpass �lter.

These techniques are also computationally intensive, and
unsuitable for fast, low-cost implementations.

A third class of algorithms, which includes projection
onto convex sets (POCS) [3], MAP estimation [4], and set
theoretic approaches [5], formulates inverse halftoning as
an inverse problem. This class assumes knowledge of the
halftoning kernel, which is not always reasonable, and im-
plements iterative non-linear constrained optimization to
solve the problem, which is computationally costly.

We present a fast algorithm that incorporates high fre-
quency information from the halftone into the inverse half-
tone. The algorithm employs entirely local operations, and
applies linear and non-linear �ltering followed by non-linear
edge enhancement and noise suppression. For error dif-
fused halftones, the algorithm produces results of compa-
rable visual quality to iterative schemes [1, 3, 4]. Unlike
these schemes, our algorithm produces high quality inverse
halftones from dithered halftones. We compare the inverse
halftones produced by our algorithm with those produced
by wavelet [2] and Bayesian [4] techniques.

2. ERROR DIFFUSED HALFTONES

Figure 1 shows the block diagram of the proposed inverse
halftoning scheme. The �rst stage obtains a smooth esti-
mate S of the original image I by linear �ltering followed by
non-linear smoothing. The linear �lter is a separable 9� 9



Algorithm, PSNR (dB) Time
Reference lena peppers (min)

Wong [1] 31.00 29.30 -
Wavelet[2] 31.47 30.43 15
Proposed 31.51 31.17 0.20

Table 1: PSNR and timing comparison of inverse halftoning
algorithms for error di�used halftones.

Gaussian lowpass �lter whose variance depends on the type
of halftone. For error di�used halftones, we choose �21 = 1:4.
The output of this �lter is quite smooth, but contains some
small-scale noise. To reduce this noise without blurring the
edges, we apply a 3�3 graylevel median �lter to the output
of the linear �lter.

Because of smoothing by the Gaussian �lter, S has a
blurred appearance. The second stage enhances the edges
in S without increasing the small-scale noise. It employs
a �xed 13 � 13 bandpass �lter to estimate the magnitude
of the local image gradient from S and suppress small-scale
noise. We threshold the bandpass �lter output B with a
global integer threshold T 2 f0; 1; 2; 3g to obtain a binary
edge map. Because of the presence of noise in B, the bi-
nary edge map may contain isolated pixels that have been
incorrectly identi�ed as edges. We logically AND the edge
map with a 5� 5 binary median �ltered version of itself to
compute a re�ned edge map E. That is, we retain an edge
pixel if at least half of its neighbors have also been identi�ed
as edge pixels. Figure 2(a) shows the noisy edge map com-
puted from the error di�used lena image, while Figure 2(b)
shows the re�ned map. The non-linear �ltering eliminates
most of the small-scale noise in the re�ned edge map.

At pixels where the edge map E is not zero, we add to
the smoothed image S a scaled version of the corresponding
pixel from the bandpass image B. This process inserts edge
information into S to produce the inverse halftone

Y (i; j) = S(i; j) +GB(i; j) 8(i; j) s:t: E(i; j) = 1 ; (1)

where G is an integer scaling factor, G 2 f1; 2; 3; 4; 5; 6g.
The free parameters are the gain G, which determines the
level of edge enhancement, and the threshold T , which de-
termines the degree of denoising. For this paper, we used
T = 0 and G = 4 for error di�used halftones. These values
gave good results on all the test images.

Figure 3 compares the inverse halftoned lena and pep-
pers images obtained by the proposed method with those
obtained by the wavelet technique [2]. The images pro-
duced by our algorithm are of comparable visual quality
with those produced using wavelet denoising. Table 1 lists
PSNR results and execution times for the proposed scheme,
the wavelet scheme, and an iterative method that uses half-
band �ltering and statistical smoothing [1]. We assume that
the error di�usion kernel is unknown. For the lena image,
the proposed method not only yields a higher PSNR, but
runs at 75 times the speed of the wavelet scheme. The large
increase in PSNR for the peppers image is due in part to
a fault in the original image, which was reported to the
authors of [2], and was corrected for this work.

Algorithm, PSNR (dB) Time
Reference Clustered Dispersed (min)

Bayesian [4] 26.3 27.2 60
Proposed 25.6 27.6 0.30

Table 2: PSNR and timing comparison of Bayesian and
proposed methods for dithered lena halftones.

For 512 � 512 error di�used halftones, our algorithm
executes in 2.4 seconds on a 167 MHz Sun Ultra-2 work-
station, and in 12 seconds on an RS/6000 workstation (a
22-MFLOP machine). On an RS/6000 workstation, the
Bayesian method executes in 90 seconds and the wavelet
scheme takes 15 minutes. For the lena image, our algorithm
obtains a PSNR that exceeds the best reported blind result
[2], and has the shortest reported execution time. Table
3 compares the complexity, memory usage, and objective
performance of the proposed method with other reported
blind inverse halftoning results.

3. DITHERED HALFTONES

Because of the large variation in screen sizes, we cannot
yet claim blind inverse halftoning from dithered halftones.
The results we quote here are restricted to the screens used
in [4]. For dithered halftones, the structure of the algo-
rithm remains the same as in Figure 1. The Gaussian �lter
remains 9 � 9, the bandpass �lter becomes 17 � 17, and
grayscale median �lter becomes 5 � 5. We choose �21 = 2:5
for 8�8 dispersed-dot dither and �21 = 8 for 4�4 clustered-
dot dither. For other screen sizes, an estimation procedure
may be used to determine the value of �21 that gives opti-
mum performance.

Figure 4 compares lena images obtained by the proposed
and Bayesian [4] methods from clustered-dot halftones. Fig-
ure 5 shows the results obtained from dispersed-dot half-
tones. For dispersed-dot halftones, the proposed algorithm
produces a sharper result than the Bayesian method. For
clustered-dot halftones, the performance of the Bayesian
method is better on �ne detail, and comparable elsewhere.
This disparity is o�set by the fact that the proposed scheme
is 200 times faster. Table 2 compares PSNRs and execu-
tion times of the two schemes for dithered halftones. The
PSNRs of the inverse halftones are comparable.

For a 512�512 dithered halftone, our algorithm executes
in 3.2 seconds on a 167 MHz Sun Ultra-2 workstation, and
in 18 seconds on an RS/6000 workstation. On an RS/6000
workstation, the Bayesian method requires one hour. Table
3 compares the complexity, memory usage, and objective
performance of the proposed method with other reported
inverse halftoning results.

4. IMPLEMENTATION

All of the linear �lters are separable, linear phase, and have
integer coe�cients. The number of multiplications is dras-
tically reduced over a non-separable implementation. Since
a halftone is binary, the �rst separable �ltering operation



(a) Raw edge map. (b) Re�ned edge map.

Figure 2: Re�nement of the raw edge map using non-linear �ltering.

is performed with only additions. All linear �ltering opera-
tions, except the scaling of �lter outputs, are implemented
with integer arithmetic. The grayscale median �lter is im-
plemented using a linear-time algorithm based on a selec-
tion sort using partitioning [7]. The binary processing in
the second stage consists primarily of pointwise operations.
The binary median �lter is implemented using comparisons
and increments. Only 28 image rows need to be stored.

Because the second stage is implemented with binary
operations, it becomes possible to allow the user to adjust
T andG interactively to obtain the best visual result for the
halftone in question. To implement this feature, we store
the pre-computed S and B images and merely re-evaluate
(1) as the user adjusts T and G.

5. SUMMARY

We present an e�cient blind inverse halftoning algorithm
which yields results that are visually comparable to the best
iterative techniques, at a fraction of the computational cost
and memory usage. Our algorithm is applicable to error
di�used and dithered halftones. Since the algorithm uses
only local operations and integer arithmetic, it is well-suited
to implementation in embedded hardware and software.
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(a) Proposed method. (b) Wavelet method.

(c) Proposed method. (d) Wavelet method.

Figure 3: Inverse halftones obtained from error di�used halftones.



(a) Proposed method. (b) Bayesian method.

Figure 4: Inverse halftones obtained from dispersed-dot dithered halftones.

(a) Proposed method. (b) Bayesian method.

Figure 5: Inverse halftones obtained from clustered-dot dithered halftones.


