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Abstract

Many current general purpose processors are using

extensions to the instruction set architecture to enhance

the performance of digital signal processing (DSP) and

multimedia applications. In this paper, we evaluate

the X86 architecture's multimedia extension (MMX)

instruction set on a set of benchmarks. Our benchmark

suite includes kernels (�ltering, fast Fourier transforms,

and vector arithmetic) and applications (JPEG com-

pression, Doppler radar processing, imaging, and G.722

speech encoding). Each benchmark has at least one

non-MMX version in C and an MMX version that

makes calls to an MMX assembly library. The ver-

sions di�er in the implementation of �ltering, vector

arithmetic, and other relevant kernels. The observed

speedup for the MMX versions of the suite ranges from

less than 1.0 to 6.1. In addition to quantifying the

speedup, we perform detailed instruction level pro�l-

ing using Intel's VTune pro�ling tool. Using VTune,

we pro�le static and dynamic instructions, microarchi-

tecture operations, and data references to isolate the

speci�c reasons for speedup or lack thereof. This anal-

ysis allows one to understand which aspects of native

signal processing instruction sets are most useful, the

current limitations, and how they can be utilized most

e�ciently.
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1 Introduction

Demand for digital signal processing (DSP) and mul-
timedia capabilities on a personal computer has been
increasing to accommodate 3-D graphics, video con-
ferencing, and other applications. The PC industry's
attempt to satisfy these demands resulted in the �rst
addition to the X86 instruction set architecture (ISA)
in almost a decade. This extension, introduced in 1996,
has been dubbed MMX (for MultiMedia eXtension)
[1, 2] and can outperform lower-end DSP processors [3].
This technology adds new assembly instructions and
data types to the existing ISA to exploit the data par-
allelism that is often available in DSP and multimedia
applications. In this study, we investigate the perfor-
mance of a suite of programs on Intel Pentium proces-
sors with MMX technology.

MMX and native signal processing (NSP) exten-
sions to general purpose processors [4, 5] are single-
instruction multiple-data (SIMD) architectures. One
SIMD data type which contains several pieces of data
is sent to a processing unit. By packing many pieces of
data into one 64-bit MMX register, several calculations
can take place simultaneously [6]. For example, image
processing applications typically manipulate matrices
of 8-bit data. Eight pieces of this data could be packed
into an MMX register, arithmetic or logical operations
could be performed on the pixels in parallel, and the
results could be written to a register.

To achieve this functionality, MMX technology adds
57 new assembly instructions to the X86 instruction
set. These instructions can operate on any of the
packed data types and on unsigned or signed data.
Saturation and wrap-around arithmetic are also sup-
ported. Multiply-accumulate (MAC), a frequent op-
eration in DSP applications, is also part of the ISA.
MMX can multiply 8-bit and 16-bit �xed-point data,
but not 32-bit data. Data widths of 8 and 16 bits are
su�cient for speech, image, audio, and video process-
ing applications as well as 3-D graphics.



MMXmaintains full compatibility with existing X86
operating systems and applications. MMX registers
and state are aliased onto the oating-point registers
and state, so no new registers or states are introduced
by MMX. Maintaining compatibility places limitations
on MMX. The MMX registers are limited to the width
of the oating-point registers (MMX uses 64 of the 80
available bits) and mixing of oating point and MMX
code becomes costly.

In DSP applications, several algorithms surface more
frequently than others [3, 4, 7, 8, 9, 10, 11, 12]. The
most common DSP kernels are the �nite impulse re-
sponse (FIR) �lter, in�nite impulse response (IIR) �l-
ter, fast Fourier transform (FFT), least mean square
(LMS) adaptive �lters, and matrix-vector arithmetic.
Applications commonly benchmarked are speech, au-
dio, image and video compression systems.

Previous e�orts have analyzed NSP on general pur-
pose processors [5, 13]. However, e�orts to compare ap-
plications with MMX instructions versus applications
without MMX on the same X86 processor have been
incomplete [8]. The results found in [8] are only antici-
pated results based on simulation. A benchmarking of
several applications on the UltraSPARC processor [4]
using the Visual Instruction Set (VIS) showed a per-
formance speedup for some DSP applications over non-
VIS versions. Applications with FIR �lters showed the
most improvement while IIR �lters and FFTs exhibited
little or no performance increase [4].

To study the e�ects of DSP and multimedia pro-
grams, we need code with and without MMX for these
applications. It is important to note that there are
no publicly available compilers that support MMX in-
structions. This means that the burden of incorporat-
ing MMX is placed solely on the developers of the ap-
plication. Achieving the largest performance increase
would involve tailoring MMX assembly code for each
speci�c application or kernel and then in-lining this
assembly code into the application source code. A
less time-consuming method would be to write generic
MMX libraries for common algorithms and kernels
which can be accessed via function calls.

Intel provides a suite of optimized assembly libraries
on their Web site [14] and with VTune [15]. Recent ver-
sions, which include the Signal Processing Library 4.0,
Recognition Primitives Library 3.1, and Image Process-
ing Library 2.0, support �xed-point functions that uti-
lize MMX and oating-point functions. Not all DSP al-
gorithms have corresponding MMX functions (e.g. the
LMS algorithm). We developed some C code and ac-
quired the remainder from several sources [10, 16, 17,
18]. We looked for code that is fast and e�cient, yet
somewhat modular and easy to interpret so that we

could interface it with the Intel libraries.
Although MMX presents opportunity for

performance increase, to our knowledge no indepen-
dent evaluations of applications on an X86 processor
with MMX corroborate and explain the performance
increase. We quantify speedup for our benchmark suite
of kernels and applications and o�er insight into de-
velopment of DSP and multimedia applications on the
Pentium family of processors. We analyze variations in
the execution time, dynamic code size, static code size,
number of memory references, function calls, number
of MMX instructions, and mix of MMX instructions.
Speedup is achieved on some, but not all, DSP and
multimedia applications. The e�ects of packing and
unpacking do not undermine the advantages of MMX,
and some applications do not require packing and un-
packing of data because of properly aligned data. On
applications such as JPEG image compression that ran
slower with MMX, we found that the core kernels of
the applications show speedup, but numerous calls to
NSP assembly libraries as well as the formatting of
data for these libraries prove to be signi�cant over-
head. The most e�ective MMX applications require
bu�ered data and high data parallelism. The instruc-
tion mix of the applications allows us to provide more
insight into these speci�c observations and elucidate
other concerns.

In this paper, Section 2 describes the benchmark
programs. Section 3 describes the experiment method-
ology, and Section 4 analyzes the results. Section 5
concludes the paper.

2 Benchmarks

For our study, we pro�le four DSP and multimedia
kernels and four applications. Table 1 summarizes the
implementations and general characteristics of the four
kernels and four applications that comprise our MMX
benchmark suite. We provide more information about
our benchmark source code at the following Web site:
http://www.ece.utexas.edu/~ljohn/mmxdsp/.
The rest of this section provides some details on the
benchmarks.

2.1 Kernels

Finite Impulse Response (FIR) Filters allow
certain frequency components of the input to pass un-
changed to the output while blocking other compo-
nents. FIR �lters are moving average �lters. Their
response to an impulse dies away in a �nite number of
samples. The output y(n) is a weighted average of the



Table 1: Summary of Benchmark Kernels and Applications

Kernels

Fast Fourier Transform (fft) 4096 point, in-place FFT

Finite Impulse Response Filter (fir) Low-pass �lter of length 35 (i.e. 35 coe�cients and 35 entry history).

In�nite Impulse Response Filter (iir) Butterworth, direct form, eighth-order bandpass �lter. Filter length of eight with

17 coe�cients.

Matrix and Vector Arithmetic (matvec) Matrix-vector multiplication of a 512�512 matrix with a vector of length 512. Dot

product on two vectors of length 512.

Applications

JPEG Image compression (jpeg) Compresses an image into JPEG format. Converted an 118 kB Windows bitmap

image into a JPEG image. Primary kernels include vector arithmetic for imaging

and the discrete cosine transform (DCT) kernel.

Image Manipulation (image) Dimming and switching the colors of a Windows bitmap. 480 � 640 Red-Green-

Blue (RGB) image in which each pixel is represented by 24 bits. Essentially vector

addition and multiplication.

G.722 Speech Encoding (g722) Standard for digital encoding and compression of speech and audio signals. Uses

adaptive di�erential pulse code modulation (ADPCM). Encoded a 6 kB speech �le.

Doppler Radar Processing (radar) Subtracts successive complex echo signals to remove stationary targets from a radar

signal and estimates the power spectrum of the resulting samples. The dominant

frequency is then estimated using the peak of the FFT spectrum. The FFT is a

16-point, in-place, radix-2, decimation-in-time FFT.

input values x(n).

y(n) =

M�1X

k=0

ck x(n� k): (1)

On each invocation, the (fir) �lter takes one new in-
put value and returns one new output value. The
non-MMX versions perform 32-bit oating-point arith-
metic, while the MMX version performs 16-bit �xed-
point calculations. Applications of an FIR �lter in-
clude speech processing, audio processing modem chan-
nel equalization, linear predictive coding, and general
�ltering.
In�nite Impulse Response (IIR) Filters are

also frequency selective and include autoregressive �l-
ters. IIR �lters feed back a weighted sum of previous
output values y(n) and add this to a weighted sum of
previous and current input values x(n)

y(n) =

Q�1X

q=0

bqx(n� q)�

P�1X

p=0

apy(n� p): (2)

A given order IIR �lter can be made more frequency
selective than the same order FIR �lter, making them
more computationally e�cient for the same behavior.
Unlike the FIR �lter, our IIR �lter (iir) performs
block �ltering, passing eight samples to the IIR �lter
function per invocation. The non-MMX versions per-
form 64-bit oating-point arithmetic, while the MMX
version performs 16-bit �xed-point calculations. Appli-
cations include audio equalization, speech compression,
linear predictive coding and general �ltering.

Fast Fourier Transform (FFT) is an e�cient al-
gorithm for computing the discrete Fourier transform
(DFT) of a sequence. The DFT is represented as fol-
lows:

X(k) =

N�1X

n=0

x(n) e�j2�kn=N (3)

Letting Wnk = e�j2�kn=N , (3) can be simpli�ed to

X(k) = Xev(n) +W k
N=2Xod(n); (4)

where Xev represents the even-indexed elements and
Xod represents the odd-indexed elements. The DFT
can be divided into even and odd halves repeatedly
until only two-point DFTs remain to evaluate.

Our implementation of the FFT (fft) supplies all of
the data at once to the functions that compute it. The
non-MMX version of the FFT perform 32-bit, oating-
point calculations. The MMX version uses 16-bit �xed-
point data. FFT-based applications include radar pro-
cessing, sonar processing, MPEG audio compression,
ADSL modems, and spectral analysis.
Matrix-Vector Arithmetic includes dot products

and matrix-vector multiplications (matvec). All ver-
sions use 16-bit �xed-point data. Any numeric compu-
tation with some degree of data parallelism can take
advantage of vector arithmetic, especially image appli-
cations.

The DSP kernels benchmarked in our suite contain
a C-only code version, a version that uses Intel's MMX
assembly library functions, and, if applicable, a version
that uses Intel's oating-point assembly library func-
tions. It is regular practice to optimize common DSP



kernels in assembly code, so we compare the MMX
version to both a compiler-optimized version and a
hand-optimized version. There is no hand-optimized
oating-point version for the vector arithmetic (matvec)
because it uses only integer data.

2.2 Applications

Doppler Radar Processing (radar) subtracts suc-
cessive complex echo signals to remove stationary tar-
gets from a radar signal and then estimates the power
spectrum of the resulting samples. The mean frequency
is then estimated by �nding the peak of the FFT spec-
trum. The input is complex and represents 12 range
locations from each echo [16]. The MMX version of
this application uses the vector arithmetic kernels and
FFT kernel. There is little measured change in the out-
put precision (10�6) between the MMX and non-MMX
versions.
JPEG is a standardized compression method for

full-color and gray-scale images. We use JPEG to com-
press images with loss of information | the output im-
age is not necessarily identical to the input image. For
natural images, medium compression ratios may pro-
duce no visible change, and high compression ratios will
produce low-quality images which may be tolerable.
Our JPEG benchmark program (jpeg) [17] compresses
but not decompresses images. It performs color con-
version, two-dimensional forward discrete cosine trans-
form (DCT), and quantization of the DCT coe�cients.
We use it to reduce an 118 kBWindows bitmap �le into
a 7 kB JPEG �le. The MMX version shows no visible
di�erence in quality than the non-MMX version, al-
though some precision is lost in the pixel calculations.
We validated the JPEG results produced by both the
MMX and non-MMX versions of the JPEG encoder by
using the Imaging for Windows NT program.
G.722 Speech Encoding (g722) is a standard for

compressing and decompressing speech using adaptive
di�erential pulse code modulation (ADPCM). The in-
put signal to the encoder is 16-bit data sampled at 16
kHz. Output from the encoder is 8 bits at an 8 kHz
sample rate. The decoder operates in exactly the oppo-
site fashion. An 8-bit coded input signal is decoded by
the ADPCM decoders. The result is a 16 kHz sampled
output [16] [19]. We encoded a 6 kB speech �le. Both
versions of this application perform real-time encoding
and decoding. Only one sample of speech is encoded
and decoded at a time. The quality of speech in the
MMX version is tolerable, but slightly inferior to that
of the C-only version.
Imaging program (image) manipulates the pixels

in a 640� 480 bitmap image uniformly. First, the pro-

gram takes an image stored as a long array of 8-bit
values and properly scales the values to produce a dim-
ming e�ect. This primarily consists of vector multiply
operations. Second, the program increases or decreases
the value of certain pixels to produce a switch in colors.
This function primarily involves vector addition. This
application shows no loss of quality between the MMX
and C-only versions when viewed using the Intel image
library viewing routine.

All of the non-MMX versions of the applications
generously use 32-bit �xed-point, 32-bit oating-point,
and 64-bit oating-point numbers to perform arith-
metic. This strategy is safe, increases precision, and is
not very costly on a general-purpose processor. Since
e�cient use of MMX requires either 16-bit or 8-bit
data, MMX versions reduce some data to 16 or 8 bit
values where appropriate. The applications run with-
out signi�cant loss of precision. For larger applications,
we use VTune to pro�le the C version of each appli-
cation, so that we can optimize the most frequently
called functions with MMX assembly functions if pos-
sible. For each application, the functions that are op-
timized account for 65-75% of the samples during the
non-MMX application's runtime.

In the process of creating our benchmark with and
without MMX, we made e�orts to ensure we were com-
paring equivalent sections of code. In some programs,
data is obtained from a �le or written to a �le. In these
cases, we bu�er the data and monitor only the reading
from the bu�er and not the I/O. We do not monitor the
initialization, setup routines, operating system work,
or �le I/O for any of the programs. We strive only to
monitor the core of the kernels and applications and
measure the e�ects of MMX performing useful DSP
and multimedia work.

3 Methodology

We compile the benchmarks using Microsoft Visual
C++ 5.0 on a Pentium II processor running Windows
NT 4.0. All programs are compiled with the optimiza-
tion \Maximize for Speed." Intel provides a separate
version of their libraries for di�erent Pentium versions.
For MMX, we choose the Pentium II MMX version
since it is their most recent, and presumably most ef-
�cient, version. We obtain performance data for the
benchmarks by using the dynamic analysis utility in
VTune 2.5.1 [15].

3.1 Using Intel's Assembly Libraries

We create the benchmarks by taking e�cient, re-
liable, C programs and then modifying them to use



assembly libraries. Intel's assembly libraries [14] pro-
vide versions of many common signal processing, vector
arithmetic, and image processing kernels. While the
Intel library functions are generally robust, intuitive,
and functionally correct, limitations exist in both the
libraries and existing C code.

First, the C programs often use oating-point and
32-bit �xed-point numbers, but the Intel MMX libraries
do not provide functions that accept 32-bit �xed-point
inputs. We rarely can simply quantize parameters (e.g.,
�lter coe�cients) to 16-bit or 8-bit �xed-point formats
and achieve acceptable results. The library functions
require that the output data be the same length as the
input data. A \scale factor" is provided to handle over-
ow, but scaling often results in a loss of precision. In
their implementation, this scale factor must be known
a priori to use MMX and therefore must allow for the
largest possible overow.

Second, C code can present obstacles to e�ciently
using MMX. In order to exploit the data parallelism in
C loops that access vector elements sequentially, all of
the temporary variables in the loop must be placed in
vectors as well. Signi�cant overhead may be associated
with this extra allocation of memory, especially if al-
located dynamically. Similarly, some signal processing
library calls require library-speci�c data structures to
be created and initialized before calling kernels such as
FIR and IIR �lters.

Third, because the same registers and state are used
for both oating-point and MMX code, potential over-
head exists when switching between modes. The emms
(Empty MMX State) instruction that switches from
MMX to oating-point mode can incur up to a 50-cycle
penalty [18].

3.2 Using VTune

VTune is a system performance pro�ling tool cre-
ated by Intel [15]. The dynamic analysis utility pro-
vides a way to monitor which assembly instructions in
a given application are being executed. VTune takes
this stream of instructions and uses them to simulate
timing and performance information.

VTune is capable of simulating timing using the Pen-
tium superscalar, two-pipeline, in-order architecture.
It traces the execution of the entire application. In or-
der to isolate code, the user may specify starting and
stopping execution points so that only results for that
section of the program are reported. When comput-
ing cache, branching, and other penalties, however, the
entire application is considered. Clock cycles are cal-
culated from the known latency of each assembly in-
struction and known latency of each penalty on the

Pentium, e.g., cache misses and branch target bu�er
misses. The most recent version available while per-
forming this research (VTune 2.5.1, May 1998) does
not yet have the full capabilities to simulate the dy-
namic execution micro-core of the Pentium Pro and
Pentium II processors.

3.3 Metrics

Execution time and the resulting speedup are the
primary metrics we use to evaluate MMX. We also
analyze the number of times individual assembly in-
structions, including MMX instructions, are executed
(instruction mix), number of instructions executed dur-
ing actual runtime (dynamic instructions), number of
unique instructions executed (static instructions), num-
ber of micro-operations that are dynamically executed,
and architecture related penalties (cache misses, branch
target bu�er misses, and other CPU-related penalties).

Not all of the obtained statistics are accurate for ev-
ery processor in the Pentium family. Instruction mix,
dynamic instructions, and static instructions are valid
for any Pentium family processor with MMX. Micro-
operations only apply to the Pentium Pro with MMX
and Pentium II processors. Clock cycles and architec-
ture related penalties are unique to the Pentium with
MMX processor.

Table 2 provides the basic characteristics of the
benchmarks as measured by VTune. Included are the
number of dynamic X86 instructions, the number of
static X86 instructions that produced the dynamic in-
structions, the number of dynamic micro-operations or
�-ops (Pentium Pro and Pentium II), the percentage
of X86 instructions that use any memory referencing
mode, and the percentage of X86 instructions that are
MMX instructions.

Figure 1(a) shows the percentage of MMX instruc-
tions within the MMX version of each program. The
programs are arranged in ascending order of speedup.
(The speedup obtained by each program is shown above
each bar.) In addition, the MMX instructions are bro-
ken down into their individual categories: packing and
unpacking, MMX arithmetic, MMX moves (64-bit),
and the emms instruction. Figure 1(b) presents infor-
mation on static and dynamic instruction count as the
ratio of C-only version to MMX version.

4 Analysis of Results

Table 3 presents some of the results of the study as
ratios of non-MMX version totals to MMX version to-
tals. Figure 2(a) presents C-only to MMX ratios for
execution time (speedup), dynamic instructions, and



Table 2: Benchmark Instruction Characteristics

Benchmark Static Dynamic Dynamic % Memory % MMX

Program Instructions �-ops Instructions References Instructions

�t.c 110 8,429,851 5,619,929 53.64

�t.fp 1,446 3,285,827 2.389.118 54.61

�t.mmx 1,640 2,585,564 1,842,347 49.54 4.69

�r.c 32 2,580,000 2,112,000 40.62

�r.fp 78 2,922,288 2,190,000 42.46

�r.mmx 218 2,040,889 1,332,051 31.98 20.27

iir.c 60 2,924,802 2,678,258 22.37

iir.fp 223 1,652,784 1,325,964 37.16

iir.mmx 227 1,299,588 1,010,568 28.33 71.23

matvec.c 35 2,106,409 2,105,355 25.04

matvec.mmx 159 1,085,055 395,125 45.83 91.6

radar.c 389 12,953,062 10,110,365 47.04

radar.mmx 1,105 11,193,249 7,190,019 36.36 8.64

g722.c 1,281 16,258,744 11,618,849 59.92

g722.mmx 1,752 25,898,326 17,582,880 43.44 1.58

jpeg.c 3,755 12,901,353 9,700,077 43.25

jpeg.mmx 4,434 25,343,001 16,294,772 44.29 6.52

image.c 68 37,934,090 26,870,550 27.47

image.mmx 175 5,063,817 2,707,314 38.29 85.10

Static Instructions are the static instructions that are executed. Dynamic �-ops are dynamic micro-operations that occur on a Pentium

II. Dynamic Instructions get executed during the running of the program. Memory References are assembly instructions that use any

memory referencing mode. .c denotes the C-only code version of the program. .fp denotes the C version with calls to the oating-point

library. .mmx denotes C version with calls to the MMX library.

memory references. Figure 2(b) does the same for the
C with oating point library version to C with MMX
ratio. In these �gures, the reduction of memory refer-
ences and dynamic instructions in the MMX versions
correspond closely with the decrease in execution time.
The reduction in memory references is important to
notice because of the signi�cant cost of accessing o�-
chip memory. We will further discuss these results
and each application's performance in the forthcoming
paragraphs.

4.1 Results from Kernels

As shown in Table 3, the kernels show reasonable
speedup with MMX code. The MMX speedup relative
to the optimized oating-point library (.fp) versions is
less than the speedup relative to the C-only (.c) code
versions in all cases. Additional speedup is achieved
using MMX instead of hand-optimized oating-point
assembly code. In all cases, the static instruction size is
increased when using MMX, even versus oating-point
assembly code. Although speedup is achieved and dy-
namic instructions are reduced signi�cantly, the static
code size increases when using MMX. This is the result
of the combination of software optimization techniques

(such as loop unrolling), MMX packing and unpack-
ing of SIMD types, calling and returning from function
calls, and handling precision problems (i.e. scaling).

The FIR �lter kernel shows a decent speedup fac-
tor of 1.57 against C-only code and a factor of 1.34
versus the oating-point library. Although this kernel
loses some data parallelism because it only processes
one input at a time, the relatively high number of taps
allows many parallel operations to take place while cal-
culating the summation (20% of instructions are MMX
instructions). The MMX version reports zero pack-
ing and unpacking instructions as a result of properly
aligned stores and moves. The MMX version of this
kernel spends 11% of the reported clock cycles doing
call and ret and twice as many total clock cycles as
the C-only version. Finally, the FIR �lter su�ers little
loss of precision in the MMX �xed-point version (order
10�4) because the error loss is not cumulative at any
point.

The IIR �lter kernel shows a more impressive
speedup factor of 2.55 compared to the C-only code
and 1.71 compared to the oating-point library routine.
The static code size increases in the MMX version, but
not as signi�cantly as fir. The higher speedup results
from block processing of the input samples (71% MMX



(a) Breakdown of MMX instructions. (b) C-only vs. MMX implementations.

Figure 1: Instruction mix analysis of MMX code and instruction count comparison between MMX and non-MMX
versions of code. For the benchmarks given, speedup increases from left to right.

instructions) which increases the data parallelism and
reduces the number of functions called. The output of
the MMX version of this IIR �lter becomes unstable.
Although the non-MMX versions produce reasonable
results, the loss of precision in the MMX version com-
pounds iteration after iteration and the output over-
ows the 16-bit data type. In a previous study [20],
our implementation of an IIR �lter yielded better pre-
cision but that version achieved a slowdown rather than
a speedup.

The FFT kernel has speedup of 1.98 compared with
the C-only version, but only 1.25 compared with the
oating-point library version. Factors other than MMX
are speeding up this kernel. One factor is the large dif-
ference in the number of data memory references. Ac-
cessing memory can be very expensive (three cycles for
a data cache miss, 8 cycles for an L2 access, and 15 cy-
cles for an L2 miss). Also, the MMX version of the FFT
only uses 4.6% MMX instructions, which is the fewest
of all the kernels. Although the implementation of the
FFT is not outlined in the Intel documentation, the as-
sembly code indicates that the samples are converted
to oating-point, and then the FFT is computed in a
similar manner to the oating-point library version. In
the initial stages of our study, we used an earlier ver-
sion of the Pentium MMX library. In this case, the
FFT used 40% MMX instructions, but provided only
1.49 speedup over a C-only version. This suggests that
computing the FFT with MMX integer calculations is
not an e�cient strategy. The limited use of MMX does
provide a speedup over the oating-point version with
little loss of precision (order 10�2) using the 16-bit data
in our implementation.

The matrix-vector kernel is predictably well-suited
for an MMX implementation. Approximately 90% of

all matvec's instructions are MMX instructions. The
execution time due to MMX is reduced by a factor of
6.61 and the dynamic instructions are reduced by a
factor of 5.3. Note that this kernel operates on 16-bit
data, so four pieces of data can be operated on in par-
allel, yet the speedup is much greater than 4.0. The
superlinear speedup is largely due to the imul instruc-
tion which does integer multiplication in 10 cycles ver-
sus the pmaddwd MMX instruction which can perform
two multiplications in 3 cycles. The dynamic instruc-
tion size reduction is due in large part to more e�cient
management of the loop structure in the MMX code.
It may be observed that matvec has the largest per-
centage of packing and unpacking MMX instructions
(20.5%), yet has a signi�cant speedup.

4.2 Application Results

Overall, the results of the applications are disap-
pointing. Two of the four applications (JPEG com-
pression and G.722 speech encoding) did not yield any
speedup. The image application is clearly the best
suited for MMX. It shows speedup of 5.5 and a dy-
namic instruction reduction of 5.3. The most impor-
tant factor is that the use of 8-bit data allows twice the
parallelism compared to the use of 16-bit data. Also,
the images are stored in a large array of 8-bit data
and are properly aligned on 8-byte boundaries. This
allows \automatic" packing and unpacking of data by
simply loading and storing quad-words (64 bits) from
memory. Also contributing to the speedup are a 9.92
times reduction in dynamic instructions, a 7.12 times
reduction in data memory references, and 85% usage
of MMX instructions.

The radar application has a low factor of speedup



Table 3: Results as ratios of Non-MMX program to MMX program

Benchmark Static Dynamic Memory

Program Speedup Instructions Instructions Micro-ops References

�t.c 1.98 0.067 3.05 3.26 3.30

�t.fp 1.25 0.881 1.29 1.27 1.42

�r.c 1.57 0.146 1.58 1.26 2.01

�r.fp 1.34 0.357 1.64 1.43 2.18

iir.c 2.55 0.264 2.65 2.25 2.09

iir.fp 1.71 0.982 1.31 1.27 1.72

matvec.c 6.61 0.220 5.32 1.94 2.91

g722.c 0.77 0.731 0.66 0.62 0.91

image.c 5.50 0.388 9.92 7.49 7.12

jpeg.c 0.49 0.847 0.62 0.51 0.61

radar.c 1.21 0.352 1.40 1.15 1.81

Speedup is the ratio of clock cycles. Static instructions are the static instruction that are executed. Dynamic instructions get executed

during the running of the program. Micro-ops are dynamic micro-operations that occur on a Pentium II. Memory References are

assembly instructions that use any memory referencing mode. .c in the Benchmark Program column denotes the C-only version of

the program and .fp denotes the C version with calls to the oating-point library.

even though all of the arithmetic is accomplished us-
ing MMX vector and FFT routines. The execution
time speedup is 1.21 and the dynamic instructions are
reduced by 1.40. Although several MMX routines are
called, only 9.58% of the instructions are MMX instruc-
tions. One shortcoming of the MMX version is that
27 times more function calls are made, many of which
are unseen to the user because they are called within
the libraries themselves. The ret and call functions
themselves consume 23.88% of the total cycles without
including the penalty for passing parameters.

We expect speedup for the JPEG compression pro-
gram, but the �nal results show the C-only version to
be 1.92 times faster although 5% of jpeg uses MMX
instructions. The slowdown is the result of forcing
the C application to use MMX library functions. The
JPEG program's computation is dominated by two-
dimensional DCT calculations, quantization, and color
conversion. These three functions account for 74% of
the C-only version clock cycles. We inserted MMX ver-
sions for these functions. The core operations of these
three functions which contain 24% MMX instructions
actually show a 1.6 speedup.

The JPEG program operates only on 8 � 8 blocks
of image pixels. The MMX version would bene�t from
a larger block size to minimize function calls. In addi-
tion, there is no two-dimensional DCT call in the MMX
libraries. So, instead of one call to a MMX 2-D DCT
function, there are 16 calls to a one-dimensional DCT
function. A highly optimized 2-D DCT written using
MMX assembly code is found to have a speedup of 1.7
compared to a C implementation [21] while our MMX

computation of the 2-D DCT shows only 1.1 speedup.
Function calling accounts for 8.3 times more clock cy-
cles in the Intel MMX version than the C-only version.
In general, accessing the pixels in the JPEG program is
rarely performed in sequential order. This increases the
di�culty of performing MMX operations at either the
function call level or the assembly level because e�cient
MMX coding requires data that is contiguous. Another
problem that exists is the precision handling and type
conversion that accompanies using the libraries in this
program. The disruption that the above factors cause
outweighs the bene�t of using MMX in our implemen-
tation.

The G.722 speech compression and encoding actu-
ally shows a slow-down as well when implemented with
MMX function calls. Some of the same problems from
the JPEG application apply here as well. The primary
drawback of this particular program as an MMX pro-
gram is that it only processes one input at a time while
encoding and decoding. Operating on blocks of data at
once would de�nitely increase the opportunity to use
MMX code. The MMX version uses 1.5% MMX in-
structions and spends 7.7% of its clock cycles on func-
tion call overhead and 3.3 times more cycles than the
C-only program. In addition, the quality of speech de-
teriorates even with a low MMX instruction count.

The disappointing results are due, in large part, to
our strategy of editing existing code instead of cod-
ing the applications from scratch. The programs we
obtained are all highly optimized, especially the JPEG
compression program, and ran very fast with high com-
piler optimizations. Editing the optimized core loops



(a) Ratio of C-only program to C program with MMX library

calls.

(b) Ratio of C program with optimized oating-point calls to

C program with MMX library calls.

Figure 2: Comparison of speedup, dynamic instruction count, and memory references.

and trying to convert them to MMX often disrupts the
continuity of the code with function calls and initial-
izations.

5 Conclusion

We analyzed the usage of MMX enhanced libraries
in implementing DSP and multimedia programs. We
found the various changes in execution time that occur
when our benchmarks are run on the Pentium with
MMX. We used several parameters to evaluate native
signal processing performance enhancement, including
execution time, dynamic instruction size, instruction
mix, and number of data references. We observed that:

� MMX can provide signi�cant speedup in certain
DSP and multimedia applications, even over hand-
optimized oating-point assembly code. The
speedups range from 1.25 to 6.6 for the kernels
and 0.49 to 5.5 for the applications.

� E�ectively using MMX to produce speedup is a
di�cult chore for large or complicated C applica-
tions, even with assembly libraries. It can require
signi�cant restructuring of existing code, recod-
ing with libraries in mind, or using exclusively
assembly code.

� Function libraries are a viable option for obtain-
ing speedup; however, the best performance in-
crease will always be obtained by tailoring MMX
assembly code to �t the application and refrain-
ing from hierarchical function calling.

� Although jpeg and g722 experienced speedup in
their core kernels, they did not experience speedup

as a whole application. Potential overhead and
other e�ciency issues which can deteriorate per-
formance arise when using exible, robust library
functions. These issues include factors such as
excessive function calls, preformatting the data
to �t the library format, and switching between
oating-point and MMX code.

� MMX has the potential to reduce dynamic in-
structions and micro-operations, but can dramat-
ically increase the static code size of the applica-
tions.

� Although packing and unpacking of data gener-
ates overhead, programs with high percentage of
these instructions are shown to be faster than
their non-MMX counterparts due to high utiliza-
tion of SIMD parallelism.

� MMX seems well-suited for imaging applications
because they often have plenty of contiguous, 8-
bit data available and rarely require precision be-
yond 8 bits. Higher precision signal processing
applications seem to cause large problems due to
their real-time and high-precision requirements.

� Although the Intel MMX library is useful, intu-
itive, and time-saving, providing 32-bit outputs
for 16-bit integer operations would enable preser-
vation of precision across function calls. The in-
terleaving of high and low words during multipli-
cation is a signi�cant problem. Image and video
compression programs would bene�t from a two-
dimensional DCT function in the MMX library.

� Reducing memory references is just as important
as reducing the number of arithmetic operations



because accessing o�-chip cache can be very ex-
pensive on a general purpose processor.

Based on our observations, MMX assembly code in-
terspersed in C code might not be the best use of the
MMX instructions set. Benchmarks that can truly ex-
ploit MMX will require more restructuring of C code
and hand-coding some functions not available in the
Intel assembly libraries, such as the 2-D DCT. Future
work on the subject could include these modi�cations
in addition to more benchmarks, such as an MPEG
video codec or commercial applications.
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