
Characterization of MMX-enhanced DSP and Multimedia

Applications on a General Purpose Processor

R. Bhargava, R. Radhakrishnan, B. L. Evans and L. John �

Electrical and Computer Engineering Department
University of Texas at Austin

Austin, TX 78712
(512) 233-1455

fravib, radhakri, bevans, ljohng@ece.utexas.edu

Keywords: Digital Signal Processing, Machine
Measurement, MMX, Performance Monitoring,
Workload Characterization.

Abstract

Proper use of native signal processing (NSP) instruc-
tion set enhancements can result in speedup for tar-
geted applications. In this paper, we study the be-
havior of the X86 architecture's Multimedia Exten-
sion (MMX) instruction set on signal processing and
multimedia algorithms and applications. In addi-
tion to quantifying speedup, we make comparisons
based on detailed dynamic instruction pro�ling. We
compare a suite of digital signal processing (DSP)
and multimedia programs implemented in C code
and the same programs implemented with calls to an
MMX assembly library that performs �ltering, vector
arithmetic, and other relevant kernels. As expected,
our analysis shows decreased execution time for most,
but not all, of our MMX programs compared to their
unmodi�ed equivalents. The observed speedup for
the programs using MMX ranges from 1.2 to 7.5. For
each set of programs, we perform a detailed instruc-
tion level analysis using VTune. This allows us to iso-
late the speci�c reasons for speedup or lack thereof.
This analysis allows one to understand which aspects
of native signal processing are most useful and how
it can be utilized most e�ciently.

�L. John is supported in part by grants from the Na-

tional Science Foundation and the Texas Advanced Tech-

nology Program. B.L. Evans is supported on a US Na-

tional Science Foundation CAREER Award under Grant

MIP-9702707.

1 Introduction

Demand for digital signal processing (DSP) and
multimedia capabilities on a personal computer
has been increasing to accommodate 3-D graph-
ics, video conferencing and other applications.
The PC industry's attempt to satisfy these de-
mands resulted in the �rst addition to the X86
instruction set architecture (ISA) in almost a
decade. This extension, introduced in 1996, has
been dubbed MMX (for MultiMedia eXtension)
and can outperform lower-end DSP processors [1].
This technology adds new assembly instructions
and data types to the existing ISA to exploit the
data parallelism that is often available in DSP
and multimedia applications. In this study, we
investigate the performance of a suite of DSP
and multimedia programs on an Intel Pentium
processor with MMX technology.

MMX and implementations of native signal
processing (NSP) on other general purpose pro-
cessors [2] [3] belong to the single-instruction
multiple-data (SIMD) class of machines. One
SIMD data type is sent to an arithmetic logic
unit but it actually contains several pieces of
data. These pieces of data are then operated on
in parallel in the arithmetic unit. To achieve this
functionality, MMX technology adds 57 new as-
sembly instructions to the X86 instruction set.
These instructions can operate on any of the
packed data types and on unsigned or signed
data. Saturation and wrap-around arithmetic
are also supported. Multiply-accumulate (MAC),
a frequent operation in DSP applications, is

1



2

added to the instruction set as well. The MMX
multiply and MAC can do multiplication of 8-bit
and 16-bit �xed-point data. These data widths
are su�cient for speech, image, low-end audio,
and video processing applications as well as 3-D
graphics.

The Pentium processor achieves superscalar
performance by utilizing two pipelines called the
U pipeline and the V pipeline [4]. MMX technol-
ogy allows two MMX instructions to be executed
per instruction. From a programmer's point of
view, MMX technology maintains full compat-
ibility with existing operating systems and ap-
plications by aliasing the MMX registers and
state onto the oating-point registers and state.
Therefore, oating-point and �xed-point oper-
ations cannot be mixed without a performance
penalty. The Empty MMX State (EMMS) instruc-
tion must be called before switching from MMX
assembly code to oating-point assembly code
and may take as many as 50 cycles [5] [6].

When discussing the implementation of many
traditional DSP applications, several algorithms
surface more frequently than others [1] [7] [2]
[6] [8] [9] [10] [11]. The most common DSP ker-
nels are the �nite impulse response (FIR) �lter,
in�nite impulse response (IIR) �lter, fast Fourier
transform (FFT), least mean square (LMS)
adaptive �lters, matrix-vector arithmetic, and
variations on these. Applications most often
benchmarked are speech, audio, image and video
compression systems.

Previous e�orts have analyzed NSP on
general purpose processors [12] [3]. However,
e�orts to compare applications with MMX in-
structions versus applications without MMX on
the same X86 processor have been incomplete [6].
The results found in [6] are only anticipated re-
sults based on simulation. A benchmarking of
several applications on the UltraSparc processor
[2] using the Visual Instruction Set (VIS) showed
a performance speedup for some DSP applica-
tions. Applications with FIR �lters showed the
most improvement while IIR �lters and FFT ex-
hibited little or no performance increase [2].

Although MMX presents the opportunity for
performance increase, to our knowledge there

have been no independent evaluations of applica-
tions on MMX PCs to corroborate and explain
this. Our �rst objective is to observe speedup
results for our benchmark of kernels and appli-
cations. Based on our observations, we o�er in-
sight into developing DSP and multimedia ap-
plications on the Pentium. Our observations in-
clude variations in the execution time, dynamic
code size, number of memory references, func-
tion calls, number of MMX instructions, and mix
of MMX instructions. From these observations
we hope to answer several questions. How much
speedup can one realistically expect to
achieve? Does the parallel execution of data suf-
�ciently make up for the packing and unpacking
overhead of using SIMD instructions? Should
one manually in-line MMX code or place it in
libraries? What types of algorithms are worth
the development e�ort to write MMX assembly
code? The instruction mix of the applications
allows us to provide insight into these speci�c
questions and elucidate other concerns.

To study the e�ects of DSP and multimedia
programs, we �rst needed to obtain source code
for such programs and the equivalent MMX as-
sembly code. It is important to note that there
are no publicly available compilers that support
MMX instructions. This means that the bur-
den of incorporating MMX is placed solely on
the developers of the application. Achieving the
largest performance increase would involve tai-
loring MMX assembly code for each speci�c ap-
plication or kernel and then in-lining this assem-
bly code. A less time-consuming method would
be to write generic MMX libraries for common
algorithms and kernels which can be accessed via
function calls.

Intel provides a suite of performance libraries
both on their Web site [5] and with VTune. Re-
cent versions of the libraries (including the Sig-
nal Processing Library version 4.0) include func-
tions that utilize MMX, although not all DSP
algorithms have corresponding MMX functions
(e.g. the least mean square (LMS) algorithm).
We developed C code and acquired the remain-
der from several resources [13]. We were looking
for code that is fast and e�cient, yet somewhat



3

modular and easy to interpret so that we could
interface them with the Intel libraries. These
resources allowed us to develop reliable and ef-
�cient programs in a relatively short amount of
time.

The paper is organized as follows. In Section
2, we describe the benchmark programs used in
the study. Section 3 describes the experiment
methodology and Section 4 presents the results.
Section 5 o�ers a summary and concluding re-
marks.

2 Benchmark Programs

Table 1 summarizes the four DSP kernels and
three applications that comprise our MMX
benchmark suite. In the process of creating our
two sets of benchmarks with and without MMX,
we are required to make compromises when mod-
ifying the original code so that it could accept
MMX library calls. The setup and initialization
for the input and output data structures are the
same for the original version of the C programs
and the MMX-enhanced version. In some cases,
the MMX data needs to be passed to the library
functions in library-speci�c data structures. In
some programs, data is obtained from a �le or
written to a �le. Programs are altered to access
data from bu�ers. We do not monitor data ini-
tialization routines or �le I/O. Instead, we only
monitor the core of the kernels and applications.

The FIR and IIR �lters perform real-time
�ltering. In each invocation, each �lter takes
one new input and returns one new output. In
the case of the FIR, IIR, and FFT kernels and
the radar processing application, the unmodi-
�ed C programs use 32-bit oating point values
throughout. For the MMX versions of these pro-
grams, 16-bit �xed-point data is required. The
coe�cients and inputs are scaled and truncated
appropriately to minimize the margin of error.
The FIR, FFT, and radar programs showed a
very small error at their outputs due to this con-
version (order of 10�6). The IIR �lter, on the
other hand, showed similar outputs for the �rst
few passes, but soon became unstable due to the
loss of precision.

The data parallelism in the FIR and IIR �l-
ters comes from the constant �lter coe�cients
and the previously computed values (history) re-
tained while calculating moving averages. In the
FFT kernel, there is parallelism available in the
bu�ered input array of known data values. In
our image processing applications, all of the data
is present at the beginning and the pixels have no
history or relationship to their neighbors. More
information on the digital signal processing al-
gorithms used in our suite can be obtained from
[13][14] .

3 Methodology

First, we produced a working version of the C
program for each benchmarked kernel and ap-
plication. Then, we wrote a program so that it
could utilize the MMX function libraries and ini-
tialize data in a similar fashion. Next, we com-
piled the original C program and MMX version
using Microsoft Visual C++ 5.0, with the high-
est level of optimization for maximum speed.

Once the programs were compiled, the out-
puts were compared to see if the results were
similar and to validate that no signi�cant errors
were being made. At this point, we used VTune
[15] to analyze programs and obtain dynamic
instruction information. We parsed the VTune
output �les and collected the relevant statistical
data.

4 Analysis of Results

Table 2 presents the dynamic instruction count
of our benchmarks. Percentage of data access
instructions and cycles spent in data access are
also presented. Table 3 presents a comparison
of the C code and the MMX version of each in-
dividual benchmark. Our primary interest is to
�nd out speci�cally when MMX is performing
well and when it is not.

The FFT kernel shows modest speedup
(about 1.5 times reduction in cycles) and dy-
namic instructions are reduced by a factor of
2.35. The FFT uses the widest variety of MMX
instructions including the multiply-accumulate



4

Kernels

Finite Impulse Response Filter Low-pass �lter of length 35 (i.e. 35 coe�cients and 35 entry history).

In�nite Impulse Response Filter Direct form, second-order bandpass �lter.

Fast Fourier Transform 1024 point, in-place, radix-2 decimation in-time FFT

Matrix and Vector Arithmetic Matrix-vector multiplication of a 16x16 matrix with a vector of length 16. Dot

product on two vectors of length 16.

Applications

Doppler Radar Processing Subtracts successive complex echo signals to remove stationary targets from a

radar signal and estimates the power spectrum of the resulting samples. The

main frequency is then estimated using the peak of the FFT spectrum. The FFT

is a 16-point, in-place, radix-2 decimation in-time FFT.

Image Dim (image1) Reduce the intensity of a Windows bitmap. 480x640 RGB (Red Green Blue)

image where each pixel is represented by 24 bits. Essentially vector multiplication.

Image Color Switch (image2) Switch the colors of a Windows bitmap. 480x640 RGB image where each pixel is

represented by 24 bits. Essentially vector multiplication.

Table 1: Summary of Benchmark Kernels and Applications

Benchmark Non MMX code MMX code
programs Dyn inst % Dat refs % Dat ref cycles Dyn inst % Dat refs % Dat ref cycles

FFT 259,524 53.72 47.64 110,553 75.25 72.30

FIR 2,178,003 39.67 38.36 954,000 42.34 62.54

IIR 1,540 47.27 32.33 4676 60.48 31.34

MatVec 2,927 31.43 43.81 493 34.60 87.92

Radar 65,552 46.97 37.28 47,437 52.81 41.19

Image1 15,678,746 30.76 29.42 2,246,460 42.56 17.14

Image2 7,380,026 49.97 85.70 403,232 55.24 96.53

Table 2: Benchmark characteristics
Dyn inst is the total number of instructions executed. % Dat refs is the percentage of instructions in the program that

perform data access. % Dat ref cycles is the percentage of cycles that the program spends in executing instructions

that refer data.

instruction PMADDWD. The multiply accumulate is
an expensive MMX instruction relative to other
MMX instructions, requiring three cycles in the
Pentium. There is packing and unpacking over-
head (6% of all instructions and 14% of MMX
instructions in the FFT) that accompanies mul-
tiplication, but the MMX version is still more
e�cient than the non-MMX equivalent.

The FIR kernel shows similar results to the
FFT kernel, with 1.5 times speedup from the
non-MMX to MMX program and dynamic in-
struction are reduced by a factor of 2.3. Also,
like the FFT, the FIR is bogged down by MACs
which represent 6% of all the instructions and

12% of the total cycles. The IIR kernel is the
only program we studied that does not show a
speedup when using the MMX library calls. The
unmodi�ed C program actually runs 3.7 times
faster than the MMX enhanced program and
the dynamic instructions increase by a factor of
3.0. The IIR �lters for this kernel are small.
The short �lter length and corresponding num-
ber of coe�cients remove data parallelism and
the amount of useful work that can be done
on each pass. In addition, a cursory look into
the MMX assembly code shows that on each
pass the �lter implementation is performing a
large amount of error checking and conditional



5

Benchmark Dynamic Data Memory Data Memory
programs Speedup Instructions References Ref. Cycles

FFT 1.49 2.35 2.65 1.52

FIR 1.54 2.28 2.36 0.99

IIR 0.27 0.33 0.48 0.38

MatVec 5.71 5.94 4.26 2.49

Radar 1.26 1.38 1.73 1.32

Image1 6.16 6.97 6.67 2.32

Image2 5.29 18.30 10.67 4.81

Table 3: Results in ratios of the Non-MMX program to MMX program
Speedup is calculated as the ratio of clock cycles (obtained using VTune). Data Memory reference is any assembly

instruction that uses any memory referencing mode. Dynamic instructions are instructions that actually get executed

during the running of the program.

branching based on this error checking. In this
particular C implementation for the IIR, the use
of Intel's MMX library degrades performance.

On the other end of the MMX spectrum, the
matrix-vector kernel is well-suited for an MMX
implementation. The execution time speedup
due to MMX is 5.7 times and the dynamic in-
struction reduction is 5.9 times. Note that this
kernel operates on 16-bit data, so four pieces of
data can be operated on in parallel, yet the im-
provements are by factors of nearly six. The
di�erence in execution time is largely due to the
imul instruction which does integer multiplica-
tion in about 10 cycles versus the pmaddwdMMX
instruction which can do two multiplications in
3 cycles. The dynamic instruction size reduction
is due in large part to more e�cient maintenance
of the loop in the MMX code.

The radar application has somewhat disap-
pointing results even though all of the arithmetic
is accomplished using MMX vector or FFT rou-
tines. The execution time speedup is 1.3 times
more with MMX code and the dynamic instruc-
tions are reduced by 1.38 times. Although sev-
eral MMX routines are called, only 20% of the
instructions turn out to be MMX instructions.
One shortcoming of the MMX application is that
33 times more function calls are made, many of
which are unseen to the user because they are
called within the libraries themselves. The ret

and call functions themselves consume 9.1% of
the total cycles without including the penalty for

passing parameters.
The image applications show the highest

speedup of all programs. The most important
factor is that the use of 8-bit data allows twice
the parallelism compared to the use of 16-bit
data. Also, the images are stored in a large array
of 8-bit data and are properly aligned on 8-byte
boundaries. This allows some \automatic" pack-
ing and unpacking of data by simply loading and
storing quad-words (64 bits) from memory. Fi-
nally, the image processing routines require no
arithmetic with neighboring pixels. Since only
the pixels from another image or data array are
used, the processing has high data parallelism
that can be exploited by using MMX.

The dimming image program primarily per-
forms multiplication. Since MMX multiplication
interleaves the high and low bytes of the re-
sult, some unpacking and re-packing is required.
About 25% percent of the instructions in this
program are pack and unpack instructions. Al-
though this seems like a large overhead for MMX
multiplication, we see that the dynamic instruc-
tions are still reduced by a factor of seven from
the highly optimized original code, and the ex-
ecution time reduces by a little more than six
times. The color switching image program does
a logical XOR between two arrays. Our results
show that no packing or unpacking is performed,
the dynamic instructions are reduced by a fac-
tor of 18, and the execution time is reduced by
almost a factor of six.



6

Figure 1. Breakdown of MMX instructions Figure 2. Correlation between speedup, ratio of
dynamic instructions and data references

Figure 1 shows the breakdown of the MMX
instructions for the MMX-enhanced program.
The benchmarks are shown in the increasing or-
der of speedup that we observe. It is seen that
programs with a higher percentage of MMX in-
structions result in more speedup. Note that
the percentage of MMX instructions that can be
used in a program is a characteristic of the algo-
rithm or the kernel and some kernels and algo-
rithms are better suited for MMX. It is also seen
that programs with the highest speedup hap-
pen to have data packing and unpacking instruc-
tions (15%-22%). It is a common notion that
packing and unpacking data would o�set the ad-
vantages of using MMX. However, we see that
the programs which have this overhead show a
signi�cant speedup over the corresponding non
MMX programs. Figure 2 shows the benchmarks
sorted in ascending order of speedup along the
X-axis. The graph also shows the ratio of dy-
namic instructions and instructions that are data
references for each benchmark. It is observed
that in all the benchmarks except image2, the
ratios are nearly identical. The speedup for
image2 does not correspond to the ratio of in-
struction and data references as in the other
benchmarks. This is partially due to the Pen-
tium multiply. The multiply instruction with
MMX technology takes three cycles, while the
corresponding integer multiply instruction on the

Pentium takes 10 cycles. This is what causes
Matvec and image1 to have a higher speedup
than image2.

5 Conclusions

We have analyzed the usage of MMX enhanced
libraries in implementing DSP and multimedia
programs. We found the various changes in ex-
ecution time that occur when our benchmarks
are run on the Pentium with MMX. We devel-
oped several parameters on which to evaluate na-
tive signal processing performance enhancement,
including execution time, dynamic instruction
size, instruction mix, and number of data refer-
ences. In addition, we made observations about
the designs of the kernels and how they a�ect
the level of performance that MMX can provide.

The following are some of our observations:

� MMX technology can provide signi�cant
speedup in digital signal processing and
multimedia applications. The speedups
ranged from 1.2 to 7.5 for the various bench-
marks.

� Although packing and unpacking of data
generates overhead, programs with high per-
centage of these instructions are shown to
be faster than their non-MMX counterparts
due to high utilization of SIMD parallelism.



7

� The best performance increase will always
be obtained by tailoring MMX code to �t
the application and refraining from hier-
archical function calling, but function li-
braries are a viable option for obtaining
speedup. However, there is potential over-
head, and e�ciency issues arise when using
exible, robust library functions.

� Reducing memory references is just as im-
portant as reducing the number of arith-
metic operations, because accessing o�-chip
cache can be very expensive on a general
purpose processor [16].

Future work will consist of incorporating
larger and more common applications such as
JPEG image compression, MPEG video decod-
ing, and various methods of speech coding [9]
[17]. We would also like to reimplement the IIR
�lter as a higher-order �lter or as an IIR biquad.
Analysis on a state-of-the-art processor, speci�-
cally Intel's Pentium II, is being performed. In-
stead of obtaining C code and forcing the MMX
version to �t that code, we will try targeting our
kernels for MMX. It will be also worth trying
techniques like data alignment, array padding,
and in-lining to see what e�ect they can have.

References

[1] G. Blalock, \Microprocessors Outperform
DSPs 2:1," MicroProcesor Report, vol. 10,
no. 17, pp. 1-4, Dec. 1995.

[2] W. Chen, H. J. Reekie, S. Bhave, and
E. A. Lee, \Native Signal Processing on the
UltraSparc in the Ptolemy Environment,"
Proc. IEEE Asilomar Conference on Sig-

nals, Systems, and Computers, pp. 1368-
1372, Nov. 1996.

[3] R. B. Lee, \Accelerating Multimedia with
Enhanced Mircoprocessors," IEEE Micro,
vol. 15, no. 2, pp. 23-32, Apr. 1995.

[4] Intel Literature, Mt. Prospect,
IL, USA, Pentium Processor Family Devel-

oper's Manual Volume 3: Architecture and

Programming Manual, 1995.

[5] Intel, \Developers' Insight."
http://developer.intel.com/drg/mmx/

manuals/overview/.

[6] L. Gwennap, \Intel's MMX Speeds Mul-
timedia," MicroProcesor Report, vol. 10,
no. 3, 1995.

[7] G. Blalock, \The BDTIMark: A Measure
of DSP Execution Speed"," 1997. Berkeley
Design Technology, Inc.

[8] P. Lapsley and G. Blalock, \Evaluating
DSP Processor Performance," 1996. Report
from Berkeley Design Technology, Inc.

[9] C. Lee, M. Potkonjak, and W. Mangione-
Smith, \MediaBench: A Tool for Evaluat-
ing and Synthesizing Multimedia and Com-
munications Systems," IEEE Micro, vol. 30,
no. 1, pp. 330-335, Dec. 1997.

[10] M. A. Saghir, P. Chow, and C. G. Lee, \Ex-
ploiting Dual Data Memory Banks in Dig-
ital Signal Processors.," Proc. Conf. Archi-

tectural Support for Prog. Lang. and Oper-

ating Sys., pp. 234-243, Oct. 1996.

[11] V. Zivojnovic, H. Schraut, M. Willems, and
R. Schoenen, \DSP's, GPP's, and Multime-
dia Applications - an Evaluation of DSP-
stone," Proc. Int. Conf. on Signal Proc.

Appl. and Tech., pp. 1779-1783, Oct. 1995.

[12] R. B. Lee, \Multimedia Extensions For
General-purpose Processors," IEEE Work-

shop on Signal Processing Systems, pp. 9-
23, Nov. 1997.

[13] P. M. Embree, C Algorithms for Real-Time

DSP. NJ: Prentice Hall, 1995.

[14] F. G. Stremler, Introduction to Communi-

cation Systems. Reading, MA: Addison-
Wesley Publishing Company, 3rd ed., 1990.

[15] Intel, \Vtune CD."
http://developer.intel.com/design/perftool/

vtcd/.



8

[16] D. C. Burger, J. Goodman, and A. Kagi,
\Memory Bandwidth Limitations of Future
Microprocessors," Int. Symp. on Computer

Architecture, pp. 78-89, May 1996.

[17] A. S. Spanias, \Speech coding: a tutorial re-
view," Proc. of the IEEE, vol. 82, pp. 1541-
1582, Oct. 1994.


