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A tool for symbolic analysis and design
of analog active �lters

Dejan V. To�si�c, Miroslav D. Lutovac, Brian L. Evans and Ivan M. Markoski

Abstract| In this paper we introduce a tool for symbolic

analysis and design of analog active �lters. It has been de-

veloped in Mathematica. The tool can be used to draw circuit

schematics, and to formulate and solve analysis and design

equations. We present a closed-form solution for a design

problem that would otherwise only be possible by numeri-

cal optimization or trial-and-error guessing and simulation.

Illustrative examples are given to demonstrate �lter design

with minimization of the sensitivity, and optimization of el-

ement values to have prescribed values.

I. Introduction

Many excellent �lter analysis and design software pack-
ages exist, but they often focus on one aspect of the design
process. For example, Spice simulates the circuit using nu-
merical methods and there are schematic capture programs
that interface to Spice. But, these programs cannot per-
form symbolic analysis or circuit synthesis.

Motivation for the development of a new software envi-
ronment is to integrate �lter analysis, design and schematic
representations into one compact electronic form, such as
a Mathematica notebook. We prefer an interactive �lter
analysis and design tool that combines symbolic and nu-
meric computational techniques.

The tool that we have developed consists of several parts:

� Procedures for drawing the circuit schematic;
� Automated formulation of circuit equations directly
from the schematic;

� Symbolic computation of network functions;
� Symbolic computation of poles, zeros and Q-factors in
terms of element values;

� Sensitivity analysis;
� Symbolic evaluation of the gain-sensitivity product
(GSP);

� Symbolic design: �nding element values in terms of
design parameters, such as gain constant, poles, zeros,
Q-factors;

� Mixed symbolic-numeric performance optimization:
minimizing GSP, minimizing element-value spread,
adjusting element values to prescribed values;

� Verifying the �lter realization;
� Validating the design; and
� Plotting the frequency response.
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Fig. 1. Highpass notch medium-Q-factor op-amp biquad.

The tool can be applied to the analysis and design of
operational ampli�er (op amp) active RC-�lters, switched-
capacitor (SC) universal �lters, operational transconduc-
tance ampli�er (OTA) �lters and current conveyor (CCII)
�lters.

II. Drawing circuit schematics

A set of procedures |Mathematicamodules | for draw-
ing basic circuit elements has been developed. We call
this set the element library, and it comprises routines for
drawing resistors, capacitors, inductors, impedances, volt-
age sources (independent and controlled), current sources
(independent and controlled), grounds, voltage ampli�ers,
voltage integrators, operational ampli�ers, operational
transconductance ampli�ers, current conveyors, junctions,
jumpers, input terminals, and output terminals. Elements
are drawn vertically or horizontally, and are centered be-
tween two given points. Each element can have a textual
label, a numerical value, and the adjustable font size. Each
elements can be individually scaled to an arbitrary size.

The element library is used to draw the schematic of a
circuit. We built a library of most frequently used lower-
order �lter realizations (typically second-order sections).
Fig. 1 shows a standard highpass notch medium-Q-factor
op-amp RC-biquad [1, pp. 64-65], [2]. Figs. 2 and 3 show
a standard notch SC [3] and OTA biquads [4]. Complex
circuits can be built from the lower-order sections, as shown
in Figs. 4 and 5 [5].
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Fig. 2. Mode 3a SC biquad.
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Fig. 3. Four OTA notch biquad.

III. Formulation of circuit equations

For a given circuit schematic of the �lter we formulate
the RMNA (Reduced Modi�ed Nodal Analysis) system of
linear equations in the Laplace domain. An automated
procedure for establishing the required RMNA equations
directly from the schematic is currently under development.

For the circuit shown in Fig. 1 the RMNA equations and
the code for solving them follow:

CircuitEquations = {V1 == Vg

, (V2-V1)/R1 + (V2-V3)/(1/(s*C4))

+ (V2-V4)/(1/(s*C3)) + V2/R2 == 0

, (V3-V2)/(1/(s*C4)) + (V3-V4)/R5 + (V3-V1)/R6 == 0

, (V5-V1)/R7 + V5/R8 + (V5-V4)/R9 == 0

, (V5-V3)*A == V4};

NodeVoltages = {V1,V2,V3,V4,V5};

CircuitResponse = Together[Flatten[

Solve[CircuitEquations,NodeVoltages]

]];

By convention, the node voltages, designated by V1, V2,
: : :, represent the circuit variables, and are kept in the list
NodeVoltages. The circuit response, i.e. the values of
V1, V2, : : :, obtained by solving the RMNA equations, are
stored in the list CircuitResponse.
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Fig. 4. Cascaded op-amp biquads.
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Fig. 5. Cascaded current-conveyor biquads.

IV. Computation of network functions

Various transfer functions are derived as a ratio of two
circuit variables. Primarily, we are interested in the voltage
transfer function de�ned as the ratio of the output voltage
to the input voltage. Other transfer functions can be of
interest if we focus on the analysis of the dynamic range of
active devices.

H = V4/V1 /. CircuitResponse //Together ;

Ha = Limit[H, A->Infinity];

Print["H(s) = ",

Collect[Numerator[Ha],s]/Collect[Denominator[Ha],s]]

V. Symbolic Analysis

Whenever possible, when we �nd the transfer function,
we prefer to determine the transfer function poles, zeros
and the corresponding quality factors in terms of symbolic
element values. For a second-order �lter section the code
for computation of poles and pole Q-factors follows:

PoleQpole[H_,s_] := Module[{den,fp,Qp},

den = Denominator[H];

fp = Sqrt[Coefficient[den,s,0]/Coefficient[den,s,2]]/(2*Pi);

Qp = (Coefficient[den,s,2]/Coefficient[den,s,1])*(2*Pi*fp);

Simplify[{fp, Qp}]];

Study of imperfections is an important step in the �l-
ter design process; therefore, it is important to exam-
ine the sensitivity of the circuit response to the changes
of element values. As a rule, we are most interested in
the magnitude-response sensitivity to element values. The
single-parameter relative sensitivity is

Sensitivity[F_,x_] := (x/F)*D[F,x];

Practical op amps have �nite and frequency dependent
gain that must be taken into account when designing ac-
tive RC-�lters. In order to quantify op-amp imperfections
Moschytz [1] de�nes the gain-sensitivity product (GSP).
The main reason for using the GSP instead of the relative
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sensitivity is that the sensitivity tends to be zero for in�-
nite values of the op-amp gain, and we can not investigate
the inuence of the gain on �lter performances.

Symbolic evaluation of the GSP is accomplished by

GSP[F_,A_] := Limit[A*Sensitivity[F,A],A->Infinity];

GSPepsA[F_,epsA_] := -(1/epsA)*Sensitivity[F,epsA]//Together;

Instead of the op-amp gain, A, sometimes, it is more e�-
cient to use its reciprocal. The GSP for the pole magnitude
is computed as

fpepsA = Together[fp /. A->1/e];

GSPfp = Simplify[GSPepsA[fpepsA,e] /. e->0];

which yields

2

R5 (R7 R8 + R7 R9 + R8 R9)

GSPfp = -----------------------------------------------

2 (R7 + R8) R9 (R5 R7 R8 - R6 R7 R9 - R6 R8 R9)

VI. Symbolic design

Our goal is to �nd element values in terms of design pa-
rameters, such as gain-factor, poles, zeros, and Q-factors.
Some element values can be arbitrary set because we have
more elements that the design parameters. Usually, we
choose element values from a prescribed set of values spec-
i�ed by the component manufacturer. For example, the
element values of the �lter in Fig. 1 are found by the pro-
cedure

DesignHNMQ[K_,Qp_,wp_,wz_,P_:0.2,c3_:C3x,c4_:C4x,r9_:R9x] :=

Module[{G,GS,K0,R1,R2,C3,C4,R5,R6,R7,R8,R9},

C3 = c3;

C4 = c4;

R9 = r9;

G = (C3*wp/(2*P*Qp))*(Sqrt[1+4*Qp^2*P*(1+C4/C3)]-1);

R7 = P*R9/K;

R8 = P*R9/(1-K);

K0 = (1+P)/(1+(1+C4/C3)*wz^2*C3^2/G^2);

R1 = K0/(G*K);

R2 = 1/(G*(1-K/K0));

R6 = G*(1+P)*(1-1/K)/(C3*C4*(wz^2-wp^2));

R5 = 1/(C3*C4*wp^2/G+P/R6);

H1 = Q/wp*(G/C3+(C3+C4)*(R5+R6)/C3/R5/C4/R6);

H2 = 1-G*(R5+R6)/wp^2/C3/C4/R5/R6;

GS = (1+P)/2*(Abs[1-H1]+Q*Abs[H2]);

{R1,R2,C3,C4,R5,R6,R7,R8,R9,GS}];

Notice that we have introduced a dimensionless design
parameter, P, as a ratio of two resistances.

VII. Performance optimization

Many �lter realizations have design parameters that can
be arbitrary chosen. These parameters can be success-
fully used to optimize �lter performance. The optimiza-
tion target can be a minimization of the GSP, sensitivity,
or element-spread values. Sometimes, we adjust the design
parameters so that some elements have prescribed values
according to technological requirements and limitations.

Consider a set of numerical element values and compute
the GSP as a function of the parameter P

values = {K -> 0.5, Q -> 10, Wp -> 2*Pi*2500

, Wz -> 2*Pi*2200, c3 -> 22.*10^(-9)

, c4 -> 10.*10^(-9), r9 -> 10000.} //N;

gspQpfp = Together[GSPQp/2-Q*GSPfp /. values];
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Fig. 6. GSP in terms of the design parameter P.

The GSP is not a simple function of P, and we plot the
GSP to see its extreme values (see Fig. 6)

P1 = 0.1; P2 = 0.3;

Plot[{gspQpfp}

, {P, 0.05, 1.0}, AxesLabel -> {"P","GSP"}];

Let us �nd the minimum of the GSP with respect to P

{GSPmin,Pset} = FindMinimum[gspQpfp,{P,P1,P2}];

which results in

K = 0.5

Qp = 10.

fp (Hz) = 2500.

fz (Hz) = 2200.

GSPmin = 19.6082

P = 0.255842

------------------------

R1 (ohm) = 2682.3

R2 (ohm) = 2588.

C3 (nF) = 22.

C4 (nF) = 10.

R5 (ohm) = 13371.7

R6 (ohm) = 77856.9

R7 (ohm) = 5116.84

R8 (ohm) = 5116.84

R9 (ohm) = 10000.

Consider a lowpass low-Q-factor �lter [1, pp. 38-39], [6]
shown in Fig. 7. Our symbolic analysis and design tool
derives the formula

2 2

C4 (1 + 2 P + P ) Q

C2 = --------------------

P

Assume that the capacitance C2 should have a prescribed
value of 27 nF. The code that adjusts the required values,
and plots the capacitance (Fig. 8), is

C2set = 27.0; (* nF *)

C2nF = (C2 /. values)*10^9;

Plot[{C2nF,C2set}

, {P, 1, 10}, AxesLabel -> {"P","C2 (nF)"}];

values = {Q -> 1.2, Co -> 3.3*10^(-9)} //N;

Pset = FindRoot[C2nF-C2set, {P, 4, 1, 10}]

yielding

P = 3.38653
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Fig. 7. Lowpass low-Q-factor op-amp biquad.

In this example we can symbolically compute P for a
given C2. There exist two solutions and we choose for which
the GSP is smaller

2 2

C2 - 2 C4 Q + Sqrt[C2 (C2 - 4 C4 Q )]

P = --------------------------------------

2

2 C4 Q

In a similar way, this tool has been used in the mixed
symbolic-numeric optimization of analog SC �lters [7].

VIII. Verifying and validating the design

For a given schematic we verify the transfer function,
its type and order, by purely symbolic computation. But,
for a given set of numerical values we validate the particu-
lar realization by evaluating the transfer function, and by
plotting its frequency response.

The transfer function

8 -12 2

0.5 (1.91076 10 - 6.00192 10 s + 1. s )

-------------------------------------------

8 2

2.4674 10 + 1570.8 s + 1. s

is validated as the highpass notch, because the pole mag-
nitude is larger that the zero magnitude. Finally, a �lter
design should be documented by plots of the frequency re-
sponses, Fig. 9.

IX. Conclusion

A new software tool has been developed to integrate �lter
analysis, design and schematic into one compact electronic
form | the Mathematica notebook. It is an interactive
�lter analysis and design tool that combines symbolic and
numeric computational techniques.

If more than one design solution exists, that usually hap-
pens in practice, the symbolic �lter synthesis can �nd all
the solutions; then, we can select the best solution based
on several criteria, such as minimal GSP or sensitivity, or
prescribed component values.
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Fig. 8. C2 in terms of the design parameter P.
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Fig. 9. Magnitude response of highpass-notch �lter, s = j2�f .

The future research e�orts will be directed towards the
integration of automated procedures for �nding the approx-
imation function into the �lter analysis and design tool de-
scribed in this paper.
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