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Abstract

Classical �lter design techniques return only one
design from an in�nite collection of alternative de-
signs, or fail to design �lters when solutions exist.
These classical techniques hide a wealth of alterna-
tive �lter designs that are more robust when imple-
mented in digital hardware and embedded software.
In this paper, we present (1) case studies of optimal
digital IIR �lters that cannot be designed with clas-
sical techniques, and (2) the formal, mathematical
framework that underlies their solutions. We have
automated the advanced �lter design techniques in
software.

1 Introduction

In designing digital IIR �lters, one generally relies
on canned software routines or mechanical table-
oriented procedures. The primary reason for these
\black box" approaches is that the approximation
theory that underlies �lter design includes com-
plex mathematics. Unfortunately, conventional ap-
proaches return only one design, thereby hiding a
wealth of alternative �lter designs that are more
robust when implemented in digital hardware and
embedded software. In addition, conventional ap-
proaches may fail to �nd a �lter when in fact one
exists.

We develop advanced design techniques to �nd a
comprehensive set of optimal designs to represent
the in�nite solution space. The optimal designs in-
clude �lters that have minimal order, minimal qual-
ity factors, minimal complexity, minimal sensitiv-
ity to pole-zero locations, minimal deviation from
a speci�ed group delay, approximate linear phase,
and minimized peak overshoot. The design space
also includes digital �lters with power-of-two coe�-
cients. We base our approach on formal, mathemat-
ical properties of Jacobi elliptic functions [1]. We
automate these advanced �lter design techniques in
software [2, 3].

The key observations underlying advanced �lter
design are that (1) many designs satisfy the same
user speci�cation; (2) Butterworth and Chebyshev
IIR Filters are special cases of Elliptic IIR Filters;
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Figure 1: Characteristic function.

and (3) minimum-order �lters may not be as e�-
cient to implement as some higher-order �lters.
First, we introduce straightforward procedures to

map the �lter speci�cation into a design space, i.e.
a set of ranges for parameters that we use in the
�lter design. We search this design space for the
optimum solution according to given criteria, such
as minimal quantization error. Second, we present
several new case studies of optimal digital IIR �lters
that cannot be designed with classical techniques,
and the formal, mathematical framework that un-
derlies their solutions.

2 Design space

We focus our attention on a lowpass �lter that
serves as the basis for the design of any lowpass,
highpass, bandpass, or bandstop �lter. First, we
map the user speci�cation into a characteristic-
function speci�cation SK , Fig. 1, to provide a
clearer relationship between the design parameters
and the speci�cation

SK = fFp; Fs;Kp;Ksg (1)

Next, we identify the design parameters. Finally, we
calculate the limits of the design parameters. The
symbol Fp designates the passband edge frequency,
and Fs designates the stopband edge frequency. We
use the term \frequency" as a short form for \digital
frequency." Frequency is a dimensionless quantity
ranging from 0 to 1

2
.

An in�nite number of characteristic functions
that �t SK exist. We consider the elliptic function

approximation, because it ful�lls the requirements



with the minimal transfer function order. The min-
imal order can often lead to the most economical
solution (the minimal number of multiplications).

The prototype elliptic approximation, Ke, is an
nth-order rational function in the real variable x

Ke(x) = �jR(n; �; x)j (2)

where R, referred to as the rational elliptic function,
satis�es the conditions

0 � jR(n; �; x)j � 1; jxj � 1
L(n; �) � jR(n; �; x)j; jxj � �

(3)

and L is the minimal value of the magnitude of R
for jxj � �

L(n; �) = jR(n; �; �)j (4)

The normalized transition band 1< x < � is de�ned
by

1 < jR(n; �; x)j< L(n; �); 1 < jxj < � (5)

The parameter � is called the selectivity factor.

The parameter � determines the maximal varia-
tion of Ke in the normalized passband 0 � x � 1

0 � Ke(x) � �; jxj � 1 (6)

and is called the ripple factor.

The elliptic approximation, K(f), is a rational
function in frequency f , Fig. 1,

K(f) = Ke(x); x =
tan(�f)

tan(�fp)
(7)

where fp is a design parameter that we call the ac-
tual passband edge. Traditionally, it has been set to
fp = Fp.

The four dimensionless quantities, n, �, �, and fp,
are collectively referred to as design parameters and
can be expressed as a list of the form

D = fn; �; �; fpg (8)

Each of the listed parameters can take a value from
a continuous range (�; �; fp) or discrete range (n) of
numbers. The order n is also referred to as the �lter
order. The elliptic function approximation provides
the minimal order, nmin = nellip, for a given spec-
i�cation. The maximal order, from the practical
viewpoint, can be assumed to be nmax = 2nmin.

The selectivity factor, �, falls within the limits
which are found by solving the equations [3]

R(n; �; �) =
Ks

Kp

) �min = �min(n) (9)

R

�
n; �;

tan(�Fs)

tan(�Fp)

�
=
Ks

Kp

� >
tan(�Fs)

tan(�Fp)

) �max = �max(n)

(10)

The ripple factor � can take a value from the
range

�min =
Ks

L(n; �)
= �min(n; �)

�max = Kp

�min � � � �max

(11)

The actual passband edge, fp, can take a value
from the interval

fp;min =
1

�
tan�1

�
tan(�Fs)

�max

�

fp;max =
1

�
tan�1

�
tan(�Fs)

�min

�

fp;min � fp � fp;max

(12)

The set of all quadruples D = fn; �; �; fpg, sat-
isfying the constraints fnmin � n � nmax, �min �

� � �max, �min � � � �max, fp;min � fp � fp;maxg,
is called the design space.

DS = fDS;ngjn = nmin; nmin + 1; : : : ; nmax
(13)

DS;n =

8>><
>>:

n

�min(n) � � � �max(n)
�min(n; �) � � � Kp

fp;min(n) � fp � fp;max(n)

Since the integer order n takes only discrete numeric
values, it is more convenient to express the design
space, DS , as a list of subspaces, DS;n, where

0 < �min(n+ 1) < �min(n)
1 < �min(n+ 1) < �min(n)

�max(n) < �max(n+ 1) � +1
0 � fp;min(n+ 1) < fp;min(n)

fp;max(n) < fp;min(n+ 1) �
1
2

3 Basic design alternatives

This section presents our case studies of a compre-
hensive set of design alternatives based on the de-
sign space. It is understood that the rational ellip-
tic function can be readily constructed for a given
set of design parameters [1]. Usually, the designer
selects the minimal order n = nmin. The design al-
ternatives that follow are general and valid for any
n from the design space. We de�ne six basic de-
signs (denoted by D1, D2, D3a, D3b, D4a, D4b) by



choosing the design parameters as follows:

� � fp

D1
tan (�Fs)

tan (�Fp)
Kp Fp

D2
tan (�Fs)

tan (�Fp)

Ks

L
Fp

D3a �min Kp Fp

D3b �min Kp

tan�1
�
tan(�Fs)

�min

�
�

D4a �max Kp Fp

D4b �max

Ks

L

tan�1
�
tan(�Fs)

�max

�
�

(14)

Characteristic function for each design is shown in
Fig. 2. Design D1 has higher attenuation in the
stopband than it is required by the speci�cation.
We choose this design when we prefer to achieve as
large attenuation as possible in the stopband.

Design D2 has lower attenuation in the passband
than it is required by the speci�cation. We choose
this design when we prefer to achieve as low attenu-
ation as possible in the passband. Also, this design
is suitable when �lter �nite wordlength e�ects can
signi�cantly change the magnitude in the passband.

Design D3a has the sharpest magnitude response.
When undesired signals exist in the transition re-
gion we may prefer design D3a, because it rejects
the undesired signals as much as possible. Design
D3b has the sharpest magnitude response (the same
as D3a). When the desired signals exist in the tran-
sition region we may prefer the design D3b, because
it attenuates the desired signals as low as possible.

Design D4a (like the design D1) has higher at-
tenuation in the stopband than it is required by
the speci�cation, except at the stopband edge fre-
quency. We choose this design when we prefer to

achieve as large attenuation as possible in the stop-
band. Design D4b (like the design D2) has lower
attenuation in the passband than it is required by
the speci�cation, except at the passband edge fre-
quency. We choose this design when we prefer to
achieve as low attenuation as possible in the pass-
band. A disadvantage of D3a, D3b, D4a and D4b
is lack of any attenuation margin. Any imperfec-
tion, usually in implementation step (like coe�cient
quantization), can violate the speci�cation.

4 Visualization of design space

A lowpass �lter will be designed to meet the atten-
uation speci�cation

SA = fFp; Fs; Ap; Asg = f0:2; 0:212; 0:2 dB; 40 dBg

where Ap designates the maximum attenuation in
passband, and As is the minimum attenuation in
stopband.

We will consider the mapped speci�cation

SK = fFp; Fs;Kp;Ksg = f0:2; 0:212; 0:2171;100g

We have calculated the minimal �lter order
nmin = 8. Next, the range of �, �, fp, and fs has
been determined for n � 8, as shown in Table 1.
The design subspace is shown in Fig. 3.

Table 1: Design space SA = f0:2; 0:212;0:2; 40g.

n 8 9 10 11 13

�min 0.063 0.0143 10�4 10�6 10�11

�max 0.217 0.217 0.217 0.217 0.217
fp;min 0.198 0.196 0.193 0.188 0.171
fp;max 0.206 0.209 0.210 0.211 0.212
fs;min 0.206 0.203 0.202 0.201 0.200
fs;max 0.214 0.216 0.220 0.225 0.243

Classical approximations will be unacceptable:
the order of the Chebyshev and Inverse Cheby-
shev type �lter is high (ncheb = 18), while the
order of the Butterworth �lter is extremely high
(nbutt = 79).
The minimal �lter order, n = nmin, implies a

small range for design parameters and the optimiza-
tion of the �lter behavior can be ine�ective. It is
also worth noticing that increasing the �lter order,
n > nmin, does not necessarily lead to a better solu-
tion. However, in many practical �lter designs the
improvement was considerable [3, 4].

The design parameters, the actual stopband edge,
the maximal attenuation in the passband, and the
minimal attenuation in the stopband, are summa-
rized in Table 2.

Table 2: Digital �lter design summary, n = 8.

D � � fp fs ap(dB) as

1 1.08155 0.217 0.2 0.212 0.2 49
2 1.08155 0.079 0.2 0.212 0.03 40

3a 1.04285 0.217 0.2 0.206 0.2 40

3b 1.04285 0.217 0.205 0.212 0.2 40
4a 1.09245 0.217 0.2 0.214 0.2 51

4b 1.09245 0.063 0.198 0.212 0.02 40

By increasing the �lter order the design D4a
arrives at the Chebyshev type approximation, for
fs = 1

2
. Alternatively, for the same order, and

fp = 0, the design D4b yields an Inverse Cheby-
shev type �lter. When the �lter order is equal to
the order of the Butterworth type �lter, with fp = 0
and fs = 1

2
, the elliptic approximation transforms

into the Butterworth approximation. This means
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Figure 2: Designs D1, D2, D3a, D3b, D4a, D4b.
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Figure 3: Design subspace for n = 8, n = 9 and n = 13.

that the classical �lter types, Chebyshev, Inverse
Chebyshev and Butterworth, are just special cases
of the elliptic �lters, and are contained within the
design space DS .

5 Conclusion

We present several case studies of optimal digital
IIR �lter design, and show that conventional ap-
proaches to �lter design either return only one de-
sign thereby hiding a wealth of robust alternatives
or fail to �nd a design when a design exists. We
develop advanced design techniques to �nd a com-
prehensive set of optimal designs to represent the
in�nite solution space. The optimal designs include
�lters that have minimal order, minimal complex-
ity, minimal number of multipliers, power-of-two
multipliers, etc. We have observed that many de-
signs satisfy the same user speci�cation, and that
minimum-order �lters may not be as e�cient to im-
plement as some higher-order �lters. This approach
we have programmed in Mathematica.
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