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Abstract

We evaluate the use of native signal processing with loop
unrolling and software prefetching to achieve high-perfor-
mance digital signal processing on general-purpose pro-
cessors. We apply these techniques to minimize the number
of processors necessary for real-time implementation of a
3-D sonar beamformer. Because our beamforming kernels
operate on high-throughput (~100 MB/s) input/output
streams, memory latency hiding techniques are key for
maximum performance. On the Sun UltraSPARC-II proces-
sor, we find speedups of 2.4 for hand loop unrolling, 1.46
for the Visual Instruction Set over floating-point arithmetic
in C, and 1.33 for software prefetching.

1. Introduction

Today’s high-performance general-purpose CPUs make
it feasible to perform substantial native signal processing
(NSP) [1,13] on the main CPU of a workstation. In addi-
tion to single-cycle multiply-accumulates (MACs), several
manufacturers have added single-instruction multiple-data
architecture extensions to their general-purpose processors,
intended to enhance performance in multimedia applica-
tions. One such example is the Visual Instruction Set (VIS)
in the Sun Microsystems [8] UltraSPARC processor.

Real-time sonar beamforming algorithms can require on
the order of billions of MACs per second, and traditionally
been implemented in custom embedded hardware. Native
signal processing on multiprocessor workstations make a
real-time implementation with commodity hardware possi-
ble, at a fraction of the development of custom hardware
solutions. Modern workstations can also provide fixed-pri-
ority scheduling for real-time applications without an

embedded real-time operating system.
The objective of this research is to develop, optimize,

and evaluate the performance of two key sonar beamform-
ing kernel routines on Sun UltraSPARC-II processors, and
to attempt to obtain maximum performance. These kernels
implement a high-resolution beamformer which combines
the outputs of vertical and horizontal sensor elements to
image an underwater environment in three dimensions. The
multi-fan vertical beamforming kernel requires integer-to-
float conversion and multiple dot products, and is imple-
mented with VIS. The horizontal beamforming kernel per-
forms index lookup and digital interpolation, and is
implemented in single-precision floating-point format.

Even with NSP advances, access to high-latency main
memory causes the processor to stall. The stream-oriented
nature of beamforming amplifies this problem because
memory I/O is high. Memory latency hiding techniques [2]
can be used to help alleviate this bottleneck and improve
kernel performance. Therefore, an additional goal of this
research is to examine these techniques as they apply to
signal processing kernels.

2. Sonar beamforming

High-resolution sonars generally consist of an array of
underwater sensors along with a beamformer to determine
from which direction a sound is coming. The sensor ele-
ment outputs must be combined to form multiple narrow
beams, each of which “looks” in a single direction and is
insensitive to sound in neighboring directions.

Time-domain beamforming is realized by weighting,
delaying, and summing the array outputs. The time delays
are determined by geometrically projecting the sensor ele-
ments onto a plane that is perpendicular to the “pointing
angle” for the desired beam, as demonstrated in Fig. 1. The
distance from each element location to the perpendicular
line, divided by the speed of sound, is the necessary time
delay for the corresponding element. In Fig. 1, only 56 of
the 80 elements are used. The response in the direction of
interest is relatively small for the remaining elements, and
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leaving them out substantially reduces computation.
In a digital system, quantization of the time delays can

distort the beam pattern. Generally, the time delay resolu-
tion required to alleviate this distortion is much finer than
the sampling period that satisfies the sampling theorem [4].
Rather than sampling at a higher rate, digital interpolation
beamforming achieves the desired time-delay quantization
by interpolating the sampled sensor data. This reduces the
quantization error at the expense of increased computation.

We form 61 beams from 80 elements, using on average
50 horizontal elements per beam, with two-point time-
delay interpolation. For each beam sample output yb, two
consecutive time samples of each sensor input xs are
delayed, weighted, and summed. The delay τbs is an inte-
ger sample delay for beam b and sensor s. The weighting
αbsj contains the delay fraction and any desired beam-
former shading. For each beam sample, this requires on

average 50 index lookups and 100 MACs. To compute one
sample of all 61 beams, we must perform approximately
3000 index lookups and 6100 MACs.

For 3-D coverage, there are multiple vertical transducers
for every horizontal element. Prior to horizontal beam-
forming, vertical beamforming groups each vertical trans-
ducer column into logical horizontal elements. The vertical
outputs are formed as a dot product of the associated trans-
ducers – to form 3 sets of 80 elements with 10 vertical
transducers, 2400 MACs are required. The vertical beam-
former input comes directly from an A/D converter, so
samples are in integer format. The output must be in float-
ing-point format for the subsequent horizontal beam-
former. Therefore the MACs may be performed in either

integer or floating-point format, and integer-to-float con-
version must be performed. This is an ideal candidate for
VIS, which performs integer arithmetic.

3. The Visual Instruction Set

Sun’s UltraSPARC includes the Visual Instruction Set
(VIS), which is specifically optimized for video and image
processing [5]. VIS adds over 50 new CPU instructions,
including basic arithmetic and logic, packing and unpack-
ing partitioned data types, alignment, data conversion, and
others. VIS treats a 64-bit register as 2, 4, or 8 partitioned
data words, and performs operations on multiple words
with a single instruction. VIS instructions can be called as
inline functions from C. Although not specifically designed
to support 1-D signal processing, VIS is an attractive target
with substantial performance on fixed-point algorithms [6].

The vertical beamformer requires the slowest, highest
precision mode of VIS – signed 16-bit by 16-bit multiplica-
tion and signed 32-bit accumulation. VIS does not directly
implement a 16x16-bit multiply, but provides two different
8-bit by 16-bit multiplies (fmuld8sux16 and fmuld8ulx16)
for this operation. Two partitioned 16x16->32 MACs are
performed with two 8x16 multiplies and two 32-bit adds.
The peak pipelined performance for this mode is one oper-
ation per clock (where a MAC is two operations). To
approach peak performance, we employ memory latency
hiding techniques.

4. Memory latency hiding techniques

As processors become faster and memories grow larger,
the latency for accesses to global memory will increase. To
reduce this latency, systems offer cache memories which
can be accessed very rapidly, but have limited storage
capacity. Enormous benefits can be achieved by arranging
computation to reuse cached data, but this approach still
must pay the initial cache loading penalty. Furthermore,
some algorithms cannot easily be arranged to take advan-
tage of the sequential access model of caches, and must
pay the penalty for many cache misses. Software tech-
niques which can help to hide these memory access delays
include loop unrolling, software pipelining, and software
prefetching.

Loop unrolling is a technique to enlarge a program’s
basic blocks – multiple loop copies are combined to form a
new, larger loop. The instructions in this new loop can be
carefully rescheduled to improve performance (in addition
to the reduced looping overhead). By increasing the time
between the data request and data consumption, the mem-
ory latency can be overlapped with useful computations.
Loop unrolling is also important for increasing instruction-
level parallelism. It can relieve data dependencies, allowing
multiple independent operations in a single cycle. Loop

Fig. 1: Projection of sensor elements from a semi-
circular array
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unrolling has few risks and no overhead associated with it
that may nullify its benefits, given sufficient registers to
unroll the loop. This optimization technique is a commonly
used by modern compilers.

Software pipelining is a technique in which memory
accesses and computations are overlapped from different
iterations in a program loop. This technique can provide
performance gains, especially in low-latency environments
[2]. However, this technique increases the number of regis-
ters required and the register lifetimes because a register
has to be associated with pre-loaded data. This technique is
more complex than loop unrolling for a compiler to imple-
ment. Loop unrolling with instruction rescheduling can be
considered a form of software pipelining.

In the software prefetching [3] technique, the processor
includes a non-blocking prefetch instruction that causes
data at a specified memory address to be brought into the
cache. These prefetch instructions can be issued at some
time prior to when the data is needed, so that the memory
latency can be overlapped with other useful computation.
Later, when the load instruction is issued, the data is
already cached and can be quickly accessed.

Many programs have memory access patterns which are
highly predictable, allowing the compiler to manage
prefetching effectively. Unlike loop unrolling, prefetching
must be used correctly so that the benefits are not nullified.
Prefetching consumes some overhead to calculate effective
addresses and issue prefetch instructions, and it consumes
extra cache space. On machines that issue multiple instruc-
tions per cycle, this technique is particularly useful because
the prefetch instructions can be executed for free.

One of the enhancements to the UltraSPARC-II archi-
tecture is the implementation of prefetch instructions [7],
which were implemented in the spirit of the literature [3].
In this paper we wish to evaluate the performance gains
achievable with the inclusion of software prefetching.

5. Tools and methodology

Our goal is to achieve maximum performance for the
horizontal and vertical beamforming kernels, measured as
execution time, using every means at our disposal. Other
statistics gathered (such as cache performance) provide
insights into kernel performance, but are of secondary
importance. In pursuit of this goal, several tools were uti-
lized, including the SPARCompiler 5.0, Shade, INCAS,
and the UltraSPARC performance counters.

The SPARCompiler is Sun’s compiler for the SPARC
processor, and is generally regarded as the best optimizing
compiler for the SPARC. The recent major release (5.0)
adds the ability to issue prefetch instructions. For program-
ming with VIS, the compiler includes inline assembly mac-
ros which are called like C functions, and are optimized to

a single opcode. For this project, similar macros were writ-
ten for prefetch and fitos (an opcode to convert 32-bit inte-
gers to 32-bit floating-point). The SPARCompiler is used
to compile all beamforming kernels. Level 5 compiler opti-
mization is turned on at all times, but profiling feedback
optimization was not used. For all results in this paper, the
compiler is attempting to perform its own optimizations in
addition to the loop unrolling (and other such optimiza-
tions) in the source code.

Shade [9] is a performance analysis tool from Sun
which can perform instruction set simulation, trace genera-
tion, and custom trace analysis. It is useful for obtaining
detailed, dynamic, instruction-level information about a
program. We developed and verified a Shade analyzer
called pficount , which counts the number of prefetch
instructions issued by a compiled program.

INCAS (It’s a Near Cycle Accurate Simulator) [10] is
Sun’s near cycle accurate model of the UltraSPARC-I pro-
cessor. It offers a convenient way to count program execu-
tion cycles and remove pipeline stalls at the cycle level.
Although INCAS models the UltraSPARC-I instead of the
UltraSPARC-II (which has larger caches and implements
the prefetch instruction), it is very useful for code optimi-
zation. Drawbacks of INCAS are that it is computationally
intensive (and therefore slow for large benchmarks), and
that it requires examining code at the instruction level. By
pre-warming the cache, using small benchmarks, and
assuming perfect prefetching, very insightful kernel opti-
mization clues can be obtained from this tool.

Many processors (including the UltraSPARC) have
hardware performance counters which can count events
such as instructions, load stalls, and cache hits. The perf-
monitor  [11] tool allows user access to these features on
the UltraSPARC-II. This tool consists of a loadable kernel
module that accesses these performance instrumentation
counters and a configurable application tool which can
measure the countable performance parameters of an exe-
cutable (similarly to the Unix time  tool). It is also possi-
ble to access the instrumentation counters directly so that
only the NSP kernel performance is measured. This tool is
almost completely non-invasive and non-sanitized, and
gives actual run-time performance results at real time.

Because execution time is our primary indication of per-
formance, care must be taken in its measure. Benchmarks
are performed on a Sun Ultra Enterprise 4000 workstation
with eight 336 MHz UltraSPARC-II processors, 2 GB of
RAM, and Solaris 2.6. This sever class multiprocessor
machine is a realistic target for computationally intensive
beamforming algorithms [12]. In this paper, kernel perfor-
mance is measured on a single processor, and scaling per-
formance is purposely ignored (see [12]). Software
prefetching has been shown to perform well in high mem-
ory latency systems [2], such as this server.



Execution time is calculated as the average of ten trials
for a reasonably sized benchmark. Execution is performed
with all memory allocated and locked, with real-time
scheduling priority, thus preventing virtual memory page
faults and preemption by other processes. Benchmarks are
performed when the machine is not heavily loaded, to
reduce unrelated memory traffic. These precautions prevent
large time variations across multiple trials; typical standard
deviations are below 0.5% of the mean.

DSP algorithms, including beamforming, are commonly
specified and measured in millions of floating-point opera-
tions per second (MFLOPS), where each multiply and each
add count as an operation. After measuring the execution
time, we calculate the useful MFLOPS from the known
number of operations for the algorithm. MFLOPS is a rea-
sonable number for comparison, and can be compared to
the known peak for the processor. To make a fair compari-
son, we use MIOPS (millions of integer operations per sec-
ond) when the algorithm is implemented in integer math. It
is again computed from execution time and the known
number of operations for the algorithm. This is not MIPS –
looping and addressing additions are not counted – only
the same operations that would be counted for MFLOPS.
For comparison, instructions per cycle is also presented in
select locations.

6. Results and analysis

Level 5 optimization for the SPARCompiler5.0 Devel-
oper Release was used, with prefetching turned on, and
profiling feedback optimization turned off. Despite exten-
sive attempts with compiler flags, we could never get the
SPARCompiler to automatically issue prefetch instructions
(as verified with the pficount  tool). For all results pre-
sented, each evaluated optimization case (such as loop
unrolling) is implemented in the source code, with the
compiler attempting to perform its own subsequent optimi-
zations. Results are presented as useful MFLOPS (or
MIOPS), which are calculated from the measured execu-
tion time and the number of operations in the algorithm.

The horizontal beamforming kernel performs approxi-
mately 3000 index lookups and 6100 MACs per sample.
For 64K samples, about 804 million floating-point opera-
tions are performed. Fig. 2 shows performance results vs.
unrolling the outer loop (by time) in the source code. The
best performance obtained was 444.3 MFLOPS, or 1.81
seconds. The processor is computing 1.32 FLOPs per cycle
(66% of peak), and issuing 2.19 instructions per cycle.

This experiment clearly demonstrates the positive effect
of loop unrolling. Here, unrolling the outer loop reduces
the number of loads. Computing a single point in the inner
loop requires 5 loads for 4 FLOPs. When unrolling, each
iteration requires only 1 more load for 4 more FLOPs.

Continuing to unroll until all registers are exhausted gives
the best performance.

This experiment also indicates a benefit for reducing the
problem size to fit in the (internal) D-Cache. Calculation of
each sample requires approximately 36 Kbytes for coeffi-
cients and 12 Kbytes of data, but the cache is only 16
Kbytes. By making multiple passes through the data and
calculating a subset at each pass (6 were used), we reduce
the problem size. If we keep the data used for all passes
small enough to fit in (external) E-Cache we must fetch
from main memory only on the first pass. For the 4 MB
external cache used in this experiment, this is several thou-
sand samples. The improvement for multiple passes is
helpful but not outstanding. At the peak, a 6.7% improve-
ment is measured. Other statistics include a 4.1% improve-
ment in D-Cache read hit-ratio (92.8%) and a 4.9%
reduction in memory load pipeline stall cycles (27.3%).

These optimizations require too much high-level knowl-
edge of the algorithm for the compiler to perform them.
However, the compiler optimizes very well when exposed
to this much parallelism in a basic block, and performs its
own inner loop unrolling. This loop is in fairly high-level
C, written especially to suit the compiler. By generating
assembly output, one can determine the compiler’s optimi-
zation performance. The compiler seems to perform best
on simple loops with large expressions. The form of these
loops is surprisingly fragile – attempts at low-level optimi-
zations that the compiler can perform (like common sub-
expression elimination) are best left to the compiler.

Software prefetching is also better left to the compiler,
but could not be made to work. By inserting inline function
calls from C, we can issue prefetch instructions. In an
attempt to evaluate prefetching with the horizontal beam-
former, a single prefetch instruction was inserted into the
inner loop of the best-performing code. As the asterisk in
Fig. 2 shows, this gave very poor results – a slowdown of
2.37. This clearly demonstrates the fragility of the compiler
loops. Despite the fact that only one assembly opcode has
been added, the compiler no longer performs aggressive
optimization on the loop (verified with assembly output).

The vertical beamforming kernel performs 2400 MAC

Fig. 2: Horizontal beamformer kernel performance
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operations per sample. For this benchmark 128K samples
are computed, requiring about 629 million operations. Fig.
3 shows performance results in MFLOPS or MIOPS for
several different cases. The best performance obtained was
313.3 MIOPS, or 2.008 seconds. This is 93% of peak for
16x16->32 MACs, and issuing 1.41 instructions per cycle.

The computation can be performed in integer or float-
ing-point, with format conversion after or before the calcu-
lation. Although the UltraSPARC can perform two FLOPs
per cycle compared to only one of these VIS operations,
data conversion significantly slows the floating-point ver-
sion. In Fig. 3, floating-point implementations are grey and
integer implementations are white. VIS with unrolled with
rescheduling and pipelining (case 8) offers a 46% perfor-
mance boost over the floating-point version (case 2).

Using the fastest VIS vertical beamformer, we examine
the effects of software prefetching. Note that (internal) D-
Cache statistics do not change with the addition of prefetch
instructions. However, the number of load and store stall
cycles change dramatically. Fig. 4 shows a breakdown of
execution time, categorized as load stalls, store stalls, or no
stall (execution) time. (All other stalls combined are less
than 1%). The execution time remains consistent through-
out the trials, but read/write prefetching reduces load/store
stalls. Prefetching gives the vertical beamformer a 33%
performance gain.

7. Conclusion

Native signal processing on the UltraSPARC-II can give
very good results. On a 336 MHz processor we achieved
444.3 MFLOPS with the horizontal beamformer, and 313.3
MIOPS with the vertical beamformer. Loop unrolling as a
means for memory latency hiding and increased instruc-
tion-level parallelism provided excellent results in both
kernels. In the horizontal kernel, it gave us a speedup of
2.4. In the vertical kernel, VIS gave a speedup of 1.46 over
floating-point, and software prefetching gave an additional
speedup of 1.33. The lack of compiler-generated prefetch
instructions in our kernels was disappointing.

Low-level programming with VIS or prefetch instruc-

tions is difficult and time consuming, similar to assembly
or DSP code. For this code, the compiler instruction sched-
uling is poor, and we must be concerned with instruction-
level detail with a tool like INCAS. However, excellent
performance gains can be achieved if the expense of hand
optimization is justifiable.
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Fig. 3: Vertical beamformer kernel performance
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Fig. 4: Vertical kernel prefetch performance
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