
Real-Time High-Throughput Sonar
Beamforming Kernels Using Native Signal

Processing and Memory Latency Hiding
Techniques

Gregory E. Allen1

Brian L. Evans
Lizy K. John

Department of Electrical and Computer Engineering
The University of Texas at Austin

http://www.ece.utexas.edu/~allen/

1

Introduction
• Sonar beamforming is computationally intensive

2

• GFLOPS of computation

• 100 MB/s of data input/output

• Current real-time implementation technologies

• Custom hardware

• Custom integration using commercial-off-the-shelf (COTS)
processors (e.g. 100 digital signal processors in a VME chassis)

• Low production volume (50 units), high development cost

• Examine performance of commodity computers

• Native signal processing, multimedia instruction sets

• Memory latency hiding techniques

Native Signal Processing

• Single-cycle multiply-accumulate (MAC) operation

• Vector dot products, digital filters, and correlation

• Missing extended precision accumulation

• Single-instruction multiple-data (SIMD) processing

• UltraSPARC Visual Instruction Set (VIS) and Pentium MMX:
64-bit registers, 8-bit and 16-bit fixed-point arithmetic

• Pentium III, K6-2 3DNow!: 64-bit registers, 32-bit floating-point

• PowerPC AltiVec: 128-bit registers, 4x32 bit floating-point MACs

• Must hand-code using intrinsics and assembly code

3

iα ix
i=1

N
∑

Visual Instruction Set
• 50 new CPU instructions for UltraSPARC

63 47 31 15 0

A1 A2 A3 A4

63 47 31 15 0

B1 B2 B3 B4

63 47 31 15 0

A1+B1 A2+B2 A3+B3 A4+B4

vis_d64

+ + + +

vis_d64

vis_d64

vis_fpadd16

• Inline function library provided for use from C/C++

• Independent operation on each data cell (SIMD)

• Optimized for video and image processing

• Partitioned data types in 32-bit or 64-bit FP registers

• Includes arithmetic and logic, packing and unpacking,
alignment and data conversion, etc.

4

Memory Latency Hiding
• Fast processor stalls when accessing slow memory

• Cache memories can help to alleviate this problem

• High-throughput streams of data amplify this problem

• Software techniques can reduce the penalty

5

• Technique: Loop unrolling

• Enlarges basic block size and reduces looping overhead

• Can increase the time between data request and consumption

• Low risk and no overhead, commonly used by compilers

• Technique: Software pipelining

• Data load and usage overlaped from different loop iterations

• Increases register usage and lifetimes, hard for compiler

Software Data Prefetching
• Non-blocking prefetch CPU instruction

• Issued at some time prior to when data is needed

• Data at effective address is brought into cache

• At a later load instruction, the data is already cached

• Can be generated by a compiler

• Implemented in the UltraSPARC-II CPU
6

• Problems: overhead and “prefetch distance”

• Uses extra cache and issues extra instructions

• Prefetch too far ahead: excessive cache usage, spillage

• Not far enough ahead: stall at load instruction

Sonar Beamforming

7

• Typically the computational bottleneck in sonar

• High throughput streams of data

• Goal: best performance using any means

• We evaluate two key kernels for 3-D beamforming

Time-Domain Beamforming

b(t) = αi xi(t–τi)Σ

i = 1

M

b(t) beam outputi

xi(t) ith sensor output

τi ith sensor delay

αi ith sensor weight

• Delay-and-sum weighted sensor outputs

• Geometrically project the sensor elements onto a
line to compute the time delays

-20 -15 -10 -5 0 5 10 15 20

-5

0

5

10

15

20

Projection for a beam pointing 20° off axis

x position, inches

20°

sensor element
projected element

8

• Modeled as a sparse FIR filter

Horizontal Beamformer

Interpolate z-N1

Interpolate z-NM

Σ b[n]
•
•

•
•

Digital Interpolation Beamformer

Stave data at
interval ∆

Interpolate up to
interval δ = ∆/L

Time delay
at interval δα1

αM

• Sample at just above the Nyquist rate, interpolate
to obtain desired time delay resolution

• Forming 61 beams from 80 elements with 2-point interpolation

• 3000 index lookup plus 6000 floating-point MACs per sample

• At each sample: 12 Kbytes of data, coefficient size of 36 Kbytes
9

Single
beam output

Multiple vertical transducers
for every horizontal position

stave

Vertical Beamformer

• Vertical columns combined into 3 stave outputs

• Multiple dot products (30 MACs per stave per sample)

• Convert integer to floating-point for following stages

• Ideal candidate for the Visual Instruction Set (VIS)

• Use integer dot products (16x16-bit multiply, 32-bit add)

• Highest precision (and slowest) VIS mode

• Coefficients must be scaled for best dynamic range
10

Tools Utilized

• Sun’s SPARCompiler5.0

• Automated prefetch instruction generation?

• Inline assembly macros for VIS instructions

• Wrote assembly macros for prefetch and fitos instructions

• Shade: pficount (prefetch instruction counter)

• INCAS (It’s a Nearly Cycle-Accurate Simulator)

• perf-monitor: hardware performance counters

• Benchmarks on a 336 MHz UltraSPARC-II

11

Horizontal Kernel Performance

• Hand loop unrolling gives speedup of 2.4

• Multiple passes improve cache usage (93% / 97%)

• Inline PREFETCH “breaks” compiler optimization

1 2 3 4 5 6 7
150

200

250

300

350

400

450

outer loop unrolling

maximum:
1.32 FLOPC
2.19 IPC
444 MFLOPS
66% of peak

multiple pass
single pass
inline PREFETCH

12

Vertical Kernel Performance

• VIS offers a 46% boost over floating-point

• Software prefetching gives an additional 34%

• 104 MB/s data input, 62.7 MB/s data output

0 50 100 150 200 250 300 350

1

2

3

4

5

6

7

8

9

floating point

floating point in asm

floating point, VIS loading

int (no VIS)

VIS baseline

VIS, unrolled inner loop

VIS, add double-loading

VIS, reschedule and pipeline

VIS, add software prefetching

MFLOPS (or MIOPS)

0.93 IOPC
1.41 IPC
313 MIOPS
93% of peak

13

Vertical Prefetch Statistics

• Breakdown of execution time

• Execution cycles (no stall) constant across trials

• Internal cache statistics do not change

0 0.5 1 1.5 2 2.5 3

1

2

3

4

no prefetching

write prefetching only

read prefetching only

read/write prefetching

Exec time (sec)

no stall
load stall
store stall

14

Conclusion

15

• Beamforming kernel results:

• Kernel optimization is difficult and time consuming

• Compiler did not generate prefetch instructions

• For high-throughput real-time signal processing,
general purpose CPUs can be an attractive target

• Near-peak performance can be achieved, but

• Horizontal beamformer kernel: 444 MFLOPS, 66% of peak

• Vertical beamformer kernel: 313 MFLOPS, 93% of peak

• Loop unrolling: 2.4 speedup in horizontal kernel

• VIS: 1.46 speedup in vertical kernel

• prefetching: 1.34 speedup in vertical kernel

