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Introduction
• Sonar beamforming is computationally intensive
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• GFLOPS of computation

• 100 MB/s of data input/output

• Current real-time implementation technologies

• Custom hardware

• Custom integration using commercial-off-the-shelf (COTS) 
processors (e.g. 100 digital signal processors in a VME chassis)

• Low production volume (50 units), high development cost

• Examine performance of commodity computers 

• Native signal processing, multimedia instruction sets

• Memory latency hiding techniques



Native Signal Processing

• Single-cycle multiply-accumulate (MAC) operation

• Vector dot products, digital filters, and correlation

• Missing extended precision accumulation

• Single-instruction multiple-data (SIMD) processing

• UltraSPARC Visual Instruction Set (VIS) and Pentium MMX:   
64-bit registers, 8-bit and 16-bit fixed-point arithmetic

• Pentium III, K6-2 3DNow!: 64-bit registers, 32-bit floating-point

• PowerPC AltiVec: 128-bit registers, 4x32 bit floating-point MACs

• Must hand-code using intrinsics and assembly code
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Visual Instruction Set
• 50 new CPU instructions for UltraSPARC
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• Inline function library provided for use from C/C++

• Independent operation on each data cell (SIMD)

• Optimized for video and image processing

• Partitioned data types in 32-bit or 64-bit FP registers

• Includes arithmetic and logic, packing and unpacking, 
alignment and data conversion, etc.
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Memory Latency Hiding
• Fast processor stalls when accessing slow memory

• Cache memories can help to alleviate this problem

• High-throughput streams of data amplify this problem

• Software techniques can reduce the penalty

5

• Technique: Loop unrolling

• Enlarges basic block size and reduces looping overhead

• Can increase the time between data request and consumption

• Low risk and no overhead, commonly used by compilers

• Technique: Software pipelining

• Data load and usage overlaped from different loop iterations

• Increases register usage and lifetimes, hard for compiler



Software Data Prefetching
• Non-blocking prefetch CPU instruction

• Issued at some time prior to when data is needed

• Data at effective address is brought into cache

• At a later load instruction, the data is already cached

• Can be generated by a compiler

• Implemented in the UltraSPARC-II CPU
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• Problems: overhead and “prefetch distance”

• Uses extra cache and issues extra instructions

• Prefetch too far ahead: excessive cache usage, spillage

• Not far enough ahead: stall at load instruction



Sonar Beamforming
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• Typically the computational bottleneck in sonar

• High throughput streams of data

• Goal: best performance using any means

• We evaluate two key kernels for 3-D beamforming 



Time-Domain Beamforming

  
b(t) = αi xi(t–τi)Σ

i = 1

M

b(t) beam outputi

xi(t) ith sensor output

τi ith sensor delay

αi ith sensor weight

• Delay-and-sum weighted sensor outputs

• Geometrically project the sensor elements onto a 
line to compute the time delays
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• Modeled as a sparse FIR filter

Horizontal Beamformer

Interpolate z-N1

Interpolate z-NM

Σ b[n]
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Digital Interpolation Beamformer

Stave data at
interval ∆

Interpolate up to
interval δ = ∆/L

Time delay
at interval δα1

αM

• Sample at just above the Nyquist rate, interpolate 
to obtain desired time delay resolution

• Forming 61 beams from 80 elements with 2-point interpolation

• 3000 index lookup plus 6000 floating-point MACs per sample

• At each sample: 12 Kbytes of data, coefficient size of 36 Kbytes
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Multiple vertical  transducers 
for every horizontal position

stave

Vertical Beamformer

• Vertical columns combined into 3 stave outputs

• Multiple dot products (30 MACs per stave per sample)

• Convert integer to floating-point for following stages

• Ideal candidate for the Visual Instruction Set (VIS)

• Use integer dot products (16x16-bit multiply, 32-bit add)

• Highest precision (and slowest) VIS mode

• Coefficients must be scaled for best dynamic range
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Tools Utilized

• Sun’s SPARCompiler5.0

• Automated prefetch instruction generation?

• Inline assembly macros for VIS instructions

• Wrote assembly macros for prefetch and fitos instructions

• Shade: pficount (prefetch instruction counter)

• INCAS (It’s a Nearly Cycle-Accurate Simulator)

• perf-monitor: hardware performance counters

• Benchmarks on a 336 MHz UltraSPARC-II
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Horizontal Kernel Performance

• Hand loop unrolling gives speedup of 2.4

• Multiple passes improve cache usage (93% / 97%)

• Inline PREFETCH “breaks” compiler optimization

1 2 3 4 5 6 7
150

200

250

300

350

400

450

outer loop unrolling

maximum:
1.32  FLOPC
2.19  IPC
444 MFLOPS
66% of peak

multiple pass
single pass
inline PREFETCH

12



Vertical Kernel Performance

• VIS offers a 46% boost over floating-point

• Software prefetching gives an additional 34%

• 104 MB/s data input, 62.7 MB/s data output
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Vertical Prefetch Statistics

• Breakdown of execution time

• Execution cycles (no stall) constant across trials

• Internal cache statistics do not change
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Conclusion
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• Beamforming kernel results:

• Kernel optimization is difficult and time consuming

• Compiler did not generate prefetch instructions

• For high-throughput real-time signal processing, 
general purpose CPUs can be an attractive target

• Near-peak performance can be achieved, but

• Horizontal beamformer kernel: 444 MFLOPS, 66% of peak

• Vertical beamformer kernel: 313 MFLOPS, 93% of peak

• Loop unrolling: 2.4 speedup in horizontal kernel

• VIS: 1.46 speedup in vertical kernel

• prefetching: 1.34 speedup in vertical kernel


