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Abstract— In this paper we present a straightforward pro-
cedure of EMQF (Elliptic Minimal Q-Factor) analog filter
design and detailed step-by-step design algorithm. The main
feature of EMQF filter is that the magnitude response in
the passband and stopband is insensitive to variations of
the element values and, thus, the implementations in analog
circuits are very robust with higher element tolerances.

I. INTRODUCTION

There exists a special class of elliptic filters called EMQF
filters (Elliptic Minimal Q-Factor), which is of prime im-
portance in many practical applications. The principle fea-
ture of the minimal @-factor filters is that their transfer
function poles lay on a circle in the complex s-plain [1].
A very selective specifications could be fulfilled with the
EMQF filter order that is slightly higher than the mini-
mal order of the elliptic filter [2], [3], [4], [5]. In addition,
the EMQF filter design features low @Q-factors and reduced
overall sensitivity. The maximal magnitude-response devi-
ation, due to element tolerances, is in the transition region.
Practically, the magnitude response in the passband and
stopband is insensitive to variations of the value of filter
elements [6], [7], [8], [9], [10], [11].

Classical analog filter design techniques return only one
design from an infinite collection of alternative designs, or
fail to design filters when solutions exist. These classical
techniques hide a wealth of alternative filter designs that
are more robust when implemented in analog circuits. In
this paper, we present (1) an algorithm of EMQF analog
filter that cannot be designed with classical techniques, and
(2) the formal, mathematical framework that underlies the
algorithmic steps. We have automated the EMQF filter
design technique in software, so we present detailed step-
by-step design algorithm.

II. NoTATION

Q-factor of a transfer function pole s; is defined as

(1)

The minimal value of the Q-factor is 1/2 and it occurs when
the pole is real. The @-factor takes the infinite value for
poles on the imaginary axis.

We review the list of symbols that we use in formulas
and procedures when designing EMQF filters:

a(f) — attenuation (dB)

a, — maximum passband attenuation of designed filter
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as — minimum stopband attenuation of designed filter

A, — maximum passband attenuation in spec (dB)

As — minimum stopband attenuation in spec (dB)

cd(u, k) — Jacobi elliptic cd function

f — frequency (Hz)

fng — normalized frequency in EMQF filter design

f» — passband edge frequency of designed filter (Hz)

F, — passband edge frequency in spec (Hz)

fs — stopband edge frequency of designed filter (Hz)

Fy — stopband edge frequency in spec (Hz)

Hming (7, €, p) — EMQF normalized lowpass transfer
function

H(s) — transfer function

i —index (¢ =1,2,...,n) or iterator

j — the imaginary unit (j = /—1)

k — modulus of elliptic functions

Ke(n, &, e, 2) — elliptic characteristic function

K j(k) — complete elliptic integral of first kind

K, — characteristic function passband spec

K — characteristic function stopband spec

L(n,&) — discrimination factor

n — transfer function order (order for short)

Newtip(Fp, Fs, Kp, K;) — minimum elliptic order

NminQ (Fp, Fs, Kp, K;) — minimum order of EMQF filter

p — normalized complex frequency

Qming (1, €, {) — quality factor of ith pole of EMQF filter

R(n,&, x) — elliptic rational function

s — complex frequency (rad/s)

S — attenuation-limit specification (spec for short)

x, y — dimensionless variables

X (n,&,4) — ith zero of elliptic rational function

¢ — ripple factor

& — selectivity factor

|z] — integer such that # < |z] <z + 1

FindRoot { F(z) = G(x) } — find real = over interval

r1<e<T2

1 < x < 2y by solving F(z) = G(x)

FJPﬁx}i%?t{ Fy(z) = Ga(z)
Y1 <y<yz

val 1 < @ < x5 and real y over interval y; < y < yo by
solving set of equations {Fy(z) = G1(x), Fa(x) = Ga(x)}.

} — find real = over inter-

III. EMQF DESIGN EQUATIONS AND PROCEDURES

In this section we summarize all EMQF filter design
equations, formulas and procedures that are based on Ja-
cobi elliptic functions.

The special mathematical function, K;(k), is used in the
design of elliptic filters
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The basic functions for the EMQF filter design are

X(n, €&, 1) and Qming(n, &, ), as follows:

)
n odd

< X(n, &, n)
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QminQ

(4)

The essential functions for the elliptic approximation are

L(n,&), R(n, &, 2), and K. (n,&, ¢, 2):
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The EMQF normalized lowpass transfer function
/HminQ (n, ga €, p)
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Attenuation-limit lowpass specification

‘SA :{Fp,Fs,Ap,As}‘

Characteristic-function-limit lowpass specification

‘SK :{Fp,Fs,Kp,Ks}‘
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K, (A,) =

(10)

(11)

We compute the minimal orders nming (Fp, Fs, Kp, K;)

and Nellip (Fp, Fs, [(p, [(5)

L = SA:S
K,
. 1
N = 1
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1= Nellip (Fpa Iy, A/ypa A/rs)
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The EMQF maximal selectivity factor
Eming (n, Fp, Fs, K, K), and the EMQF normalized fre-
quency fng (n, Fp, Fs, K, Ky)
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We use the above relations in the numerical design.

IV. EMQF FILTER DESIGN ALGORITHM

A detailed step-by-step procedure for computing the
EMQF lowpass transfer function with the maximum se-
lectivity follows:

1. Start from a specification and convert it into the

characteristic-function-limit specification

Sa= {Fp, Fs,Ap,As} — Sk = {Fp, Iy, Kp, K}
(16)
2. Compute the minimal order nming (Fp, Fs, Kp, K;)
3. Choose the EMQF order

nznminQ (Fpana[(paI(S) (17)

4. Compute the EMQF maximal selectivity factor
ngminq (nananaI(pa[(s) (18)

and the corresponding EMQF normalized frequency

frg (n, Fp, Fs, K, Ky) (19)
5. Compute the EMQF ripple factor
1
€= —— (20)
L(n,&)
6. Compute the EMQF actual passband edge
F
fp - (21)

B an (na Fpa Fsa [(pa [{s)
7. Construct the normalized lowpass transfer function
7-[ (TL, ga €, p)

8. Construct the EMQF lowpass transfer function

) (23)

(22)

s

H(S) - /H(naga €, 27Tfp
EXAMPLE

For a given spec S4 = {3Hz, 4Hz, 0.2dB, 20dB}, we find

the order nming = 4, the selectivity factor &ming = 1.412,

the ripple factor ¢ = 0.08686, the actual passband edge

fp = 2.852 Hz, the EMQF lowpass transfer function

b484 + b383 + b282 + b15 + bo
a45* + azs® + as52 + ays + ag

H(s) =

by = 8.39043190470- 107 a4 = 9.69635689477 - 10~°

bs =0 as = 3.71192253704 - 10~*
by = 3.37168171565- 103 a3 = 0.0107556987695
by =0 a; = 0.168290719763

bo = 1.98563643345 ap = 1.99311235679

The value of the highest pole Q-factor is Qming = 3.359.
The EMQF attenuation characteristic is shown in Fig. 1.

It should be noticed that the edge frequencies of the de-
signed filter are not equal to the edge frequencies in spec,
and also the passband attenuation is very small except at
the passband edge frequency

fy=2852Hz < F,=3Hz
fi =4.026Hz > F,=4Hz

a, =0.03dB < A, =0.2dB
a;=21.2dB > A, =20dB
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V. CONCLUSION

In this paper we present a detailed step-by-step de-
sign algorithm of EMQF (Elliptic Minimal Q-Factor) ana-
log filter. We have automated this algorithm in soft-
ware (MATLAB). The software can be downloaded from
http://galeb.etf.bg.ac.yu/ "tosic/afdhome.htm.



SA = {3 Hz, 4 Hz, 0.2 dB, 20 dB}
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Fig. 1. Attenuation characteristic of an EMQF filter for S4 = {3Hz, 4Hz, 0.2dB, 20dB}.
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