Efficient Implementation of Foveation Filtering

Sanghoon Lee, Alan C. Bovik, Brian L. Evans Laboratory for Image and Video Engineering The University of Texas at Austin http://anchovy.ece.utexas.edu

Motivation

Fast foveation filter design

- Reduce the number of operations (additions and mulitiplications)
- Obtain the high visual quality of foveated images

Human eye and photoreceptor density

Foveated image: *news* (352 x 28)

Foveated video vs. regular video

- PSNR = 30.10
- FPSNR = 29.54
- PSNR = 33.92
- FPSNR = 35.01

Foveation point selection

Stored video application

- Web news: prior to video compression
- Real-time visual communications
 - Selected by both sender and receiver
 - Automatic detection for face-to-face communications
- Remote navigation or emergency vehicles: eye tracker

Human interactive multimedia

Human visual system modeling

Local bandwidth acquisition

- Calculate eccentricity at each pixel by e_x = tan⁻¹ (i_d d_x / (i_p v_d))
- Derive detectable frequency from the spatial mosaic of cones based on the sampling theorem
 f_d = γ / (e_x + η) ζ
- Obtain the local bandwidth from the detectable frequency
- Use the local bandwidth as the cutoff frequency in the filter design

Ideal foveation filter design

Parseval's theorem

$$\sum_{i=-\infty}^{\infty} h^{*2}(i) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H^{*}(e^{i\omega})|^{2} d\omega = \frac{\omega_{c}}{\pi}$$

where $H^{*}(e^{i\omega}) = 1$, $|\omega| < \omega_{c}$ and 0 , $\omega_{c} < |\omega| < \pi$

- If ω_c is changed according to each pixel such as $\omega_c = 2\pi f_{pn}$, then the ideal low pass filter $H^*(., f_{pn})$ is used to create foreated images

Practical foveation filter design

- Let h(i) and $H(e^{i\omega})$ be the Fourier transform pair of low pass filter with the filter length N
- Then, the total energy of the error signal becomes $e = \sum_{i=1}^{\infty} [h^*(i) h(i)]^2$
- The error ratio $\tau = e\pi/\omega_c$ is inversely proportional to the cutoff frequency
- We can decide the filter length N while \(\tau\) is less than a constant associated with the cutoff frequency at each pixel

Separable even symmetric filter

- To reduce the number of multiplications, we use a separable even symmetric low pass filter $l_n(i_1,i_2) = l_n(i_1)l_n(i_2)$, if $-N_n/2 \le i_1, i_2 \le N_n/2$ =0, otherwise
 - where N_n is the filter length at the n^{th} pixel
- For the separable even symmetric filter, the number of operations is reduced to

$$2(N_n / 2 + 1)$$

for additions and multiplications for each pixel

Circularly symmetric filter

- Using circularly symmetric filters, we can obtain more symmetric frequency response associated with the local bandwidth
- The octal symmetry of circularly symmetric filters $l_n(i_1,i_2) = l_n(\pm i_1)l_n(\pm i_2) = l_n(\pm i_2)l_n(\pm i_1)$
- The number of operations for each pixel
 - -For additions $7(N_n/2+1)(N_n/2+2)/2-6$
 - For multiplications

 $(N_n/2+1)(N_n/2+2)/2-1$

Simulation results

The distribution of foveation points is assumed to be a Gaussian function

$$p(n_1, n_2) = \alpha e^{-2\pi^2 \sigma^2 r^2 / i_p^2}$$

where *r* is the distance from foveation point to pixel *n*, i_p is the number of pixels in horizontal line, σ is selected by the half-peak radius

Average number of multiplications at each pixel

	separable			circularly		
	τ			τ		
	0.15	0.1	0.05	0.15	0.1	0.05
σ=0.38	7.4	10.1	20.9	8.4	16.1	69.0
σ=0.57	7.2	9.8	20.8	7.9	15.2	63.9

Original image

Foveated image sep., adaptive N_n , $\tau = 0.1$

Conclusions

- Implement very efficient real-time foveation filtering having low pass filters with continuously varying cutoff frequencies
- Obtain the cutoff frequency based on human visual modeling
- Reduce the computation complexity by changing the filter length according to the magnitude of cutoff frequencies

Foveated image circular., *N*=31

Foveated image circular, adaptive *N*, $\tau = 0.1$

