Fast Rehalftoning and Interpolated Halftoning with Flat Low-Frequency Response

Thomas D. Kite Audio Precision, Beaverton, OR

Brian L. Evans and Alan C. Bovik
Laboratory for Image and Video Engineering
The University of Texas at Austin

http://signal.ece.utexas.edu

Outline

- Introduction to halftoning
- Halftoning by error diffusion
- Rehalftoning
 - Algorithm
 - Results
- Interpolated halftoning
 - Algorithm
 - Results
- Computational requirements
- Conclusion

Introduction to Halftoning

- Word length reduction for images
 - ▶ 8-bit to 1-bit for grayscale
 - ▶ 24-bit RGB to 8-bit for color displays
 - ▶ 24-bit RGB to CMYK for color printers
- Applications
 - Printers
 - Digital copiers
 - Liquid crystal displays
 - Video cards
- Halftoning methods
 - Screening
 - Error diffusion
 - Direct binary search
 - Hybrid schemes
- Consider grayscale error diffusion

Halftoning by Error Diffusion

- 2-D delta-sigma modulator
- Noise shaping feedback coder

■ Error filter

Model by linearizing quantizer

- K_n = 1 for error diffusion
- $K_s \approx 2$ for Floyd-Steinberg filter

Rehalftoning

- Different halftoning methods in use
 - Laser printer: ordered screening
 - Inkjet printer: error diffusion
- Optimal rendering of halftone for a particular device
 - Inverse halftone to grayscale image
 - ▶ Rehalftone grayscale image
- Inverse halftoning is expensive
 - Use simple inverse halftoning method
 - Artifacts concealed
 - Response errors corrected in halftoning
- Use modified error diffusion [Eschbach and Knox, 1991]
 - ▶ Sharpness control parameter *L*
- Assume input and output are error diffused halftones

Rehalftoning Algorithm

Block diagram of rehalftoning system

- Convert one error diffused halftone into another error diffused halftone
- Inverse halftone with 4×4 filter
 - Symmetric FIR filter
 - Zeros at band edges
 - ▶ 6-bit output resolution
- Set sharpness control parameter L
 to flatten system response at low
 frequencies
 - L \approx 0.188 for Floyd-Steinberg filter

Rehalftoning Results

Original image

Rehalftone

End-to-end signal transfer function

Interpolated Halftoning

- Image resizing
- Methods in increasing complexity
 - Nearest neighbor
 - Bilinear
 - Bicubic, cubic splines, lowpass filtering
- Nearest neighbor, bilinear methods
 - Low computational cost
 - Artifacts masked by quantization noise in halftone
 - Blurring correctable by modified error diffusion
- **■** Examine ×2 interpolation
 - Method applies to any scaling factor
 - Design *L* for flat transfer function using linear gain model of the quantizer
 - ightharpoonup L constant for an interpolation method

Interpolation Results

Nearest neighbor $\times 2$

Bilinear ×2

Transfer function L = -0.0105

Transfer function L = 0.340

Computational Requirements

- Rehalftoning per pixel
 - **▶** 34 increments (++)
 - ▶ 12–28 integer additions
 - 4 integer multiplications
 - 2 bit shifts
- Rehalftoning a 512 × 512 image
 - ▶ Computation: 16 million operations
 - Memory usage: 2060 bytes
- ×2 interpolation per pixel
 - ▶ 2 increments (++)
 - ▶ 9.67 integer additions
 - 4 integer multiplications
 - 3 bit shifts
- $\times 2$ interpolation on 512×512 image
 - ▶ Computation: 5 million operations
 - ▶ Memory usage: 1024 bytes

Conclusion

- Rehalftoning needed for scanning, processing, and reprinting
- Interpolation needed for resizing in printing and copying
- Developed algorithms for error diffused halftones
 - Rehalftoning & interpolated halftoning
 - ▶ Flat low-frequency end-to-end response
- Efficient implementation
 - Local memory
 - Integer arithmetic
 - Suitable for embedded implementation
- Web site for software and papers

http://www.ece.utexas.edu/~bevans/
projects/inverseHalftoning.html