Lossy Compression of Stochastic Halftones with JBIG2

Magesh Valliappan and Brian L. Evans Embedded Signal Processing Laboratory The University of Texas at Austin http://signal.ece.utexas.edu/

> Dave A. D. Tompkins and Faouzi Kossentini Signal Processing and Multimedia Group University of British Columbia http://spmg.ece.ubc.ca/

Introduction

- Digital halftoning
 - Continuous tone to bi-level
- Ordered dithered halftones
 Periodic mask of thresholds
- Stochastic halftones
 - Shape quantization noise into high frequencies

Joint Bi-Level Experts Group

- JBIG2 Standard
 - Document printing, faxing, scanning, storage
 - Lossy and lossless coding
 - Models for text, halftone, and generic regions
- Lossy JBIG2 Compression of Halftones
 - Preserve local average gray level not halftone
 - Spatially periodic descreening
 - High compression of ordered dither halftones

Motivation

Lossy Compression of Halftones

Proposed Method

Quality Metrics

- Model degradation as linear filter plus noise
- Decouple and quantify linear and additive effects
- Contrast sensitivity function (CSF) $C(\omega_{1'} \omega_2)$
 - Linear shift-invariant model of human visual system
 - Weighting of distortion measures in frequency domain

Quality Metrics

- Estimate linear model by Wiener filter
- Weighted Signal to Noise Ratio (WSNR)
 - Weight noise D(u, v) by CSF C(u, v)

$$WSNR = 10 \log_{10} \left(\frac{\sum_{u} \sum_{v} |X(u, v)C(u, v)|^2}{\sum_{u} \sum_{v} |D(u, v)C(u, v)|^2} \right)$$

• Linear Distortion Measure

– Weight distortion by input spectrum X(u, v) and CSF C(u, v)

$$LDM = \frac{\sum_{u} \sum_{v} |1 - H(u, v)| |X(u, v)C(u, v)|}{\sum_{u} \sum_{v} |X(u, v)C(u, v)|}$$

Results

512 x 512 Floyd Steinberg halftone of barbara image

High QualityRatio6.6:1WSNR18.7 dBLDM0.116

High CompressionRatio9.9:1WSNR14.0 dBLDM0.158

Results

Results for 512 \times 512 Floyd Steinberg halftone

Prefilter	L	Μ	Ν	θ	LDM	WSNR	Ratio
X	0.0	4	17	0^{o}	0.163	15.4 dB	6.1
Y	0.0	4	17	0^{o}	0.181	16.5 dB	7.5
Y	0.5	4	17	0^{o}	0.091	16.0 dB	6.4
Y	1.5	4	17	0 ^o	0.292	14.8 dB	5.2
Y	0.5	6	19	45°	0.116	18.7 dB	6.6
Y	0.5	8	33	45°	0.155	15.7 dB	8.2
Y	0.5	8	16	45°	0.158	14.0 dB	9.9

Rate Distortion Curve - LDM

Rate Distortion Curve - WSNR

12

Conclusions

- JBIG2 encoding of stochastic halftones
 - Reduce noise and artifacts
 - Achieve higher compression ratios
 - Require low computational complexity
- Rate distortion tradeoffs of free parameters

 Quality metrics consistent with visual quality