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Abstract – Optical Doppler Tomography (ODT) is a non-
invasive 3-D optical interferometric imaging technique that
measures static and dynamic structures in a sample. To
obtain the dynamic structure, e.g. blood flowing in tissue, a
velocity estimation algorithm detects the Doppler shift in the
received interference fringe data with respect to the carrier
frequency. Previous velocity estimation algorithms use
conventional Fourier magnitude techniques that do not
provide sufficient frequency resolution in fast ODT systems
because of the high data acquisition rates and hence short
time series. In this paper, we propose a nonlinear algorithm
that uses the phase shift between two successive scans of
interference fringe data to give a high-resolution estimate of
the Doppler shift.   The algorithm detects Doppler shifts of
0.1 to 3 kHz with respect to a 1 MHz carrier. In processing
5 frames/s with 100 x 100 pixels/frame and 32
samples/pixel, i.e. 1.6 million samples/s, the algorithm
requires 26 million multiply-accumulates/s. The algorithm
works well at 4 bits/sample. The low complexity and small
input data size are well-suited for real-time implementation
in software. We provide a mathematical analysis of the
Doppler shift resolution by modeling the interference fringe
data as an AM-FM signal.

I. Introduction
Optical Doppler tomography (ODT) is a non-invasive
optical interferometric imaging technique. ODT systems
incorporate laser Doppler flowmetry and optical coherence
tomography to produce high-resolution images of static (e.g.
fibrous tissue) and dynamic (e.g. flowing blood) structural
components in highly scattering samples. ODT systems
utilize a Michelson interferometer that has a broadband light
source that emits in a single mode to measure light

backscattered from turbid media with high spatial resolution
(~10 µm) and sensitivity (dynamic range of 100 dB).  High
spatial resolution in depth is obtained since only light
backscattered from the turbid medium with equal optical
path lengths in the sample and reference paths will produce
interference fringe data (IFD). The carrier frequency (fc) of
the IFD is established by phase modulation of light in the
reference and/or sample paths of the interferometer. The
IFD is digitized at each location in the sample by raster
scanning light in the sample arm.

Any flow in the tissue that is in line with the source beam
will result in backscattered light whose spectrum exhibits a
Doppler spread (σd

2) and shift (fd) away from the carrier
frequency. Doppler shift is proportional to the velocity of
components moving along the incident light direction. ODT
has the ability to image biological tissue in three spatial
dimensions. Since the lateral movement of the source beam
can be precisely controlled to resolution of 2-15 µm, high
spatial resolution images can be obtained.

The first Doppler velocimetry system [1] appeared
shortly after the invention of the laser in the 1960s. Because
sources in early Doppler velocimetry systems had narrow
spectral emission profiles, poor control over depth, low
image resolution, and slow frame acquisition rates were
obtained. In 1995, a novel method of Doppler velocimetry
incorporated a broadband light source [2,3] which gave
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Figure 1: ODT images of polystyrene microspheres in a
polyethylene conduit submerged 1 mm below the surface
in a turbid sample: (a) ODT structural image of flowing
microspheres, and (b) ODT velocity image of flowing
microspheres. [3]
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better control over depth and higher image resolution and
also allowed flow velocity measurements in turbid media.
This first ODT system used the amplitude of the received
signal for the greyscale value of the pixels in the structural
image, while the Doppler shift information is used to
calculate the velocity in the image. The Doppler shifts are
calculated as the difference between fc and the centroid of
the short-time Fourier transform (STFT) [6] of the IFD
obtained at the point being imaged.  The calculated Doppler
shift is used to create the ODT velocity image.  Examples of
structural and velocity images are shown in Figure 1.

Current generation ODT systems [2,3,4,5] require several
minutes to produce one frame. The next generation systems
are targeting 5 frames/s at a resolution of 100 × 100 pixels
per frame.  With only 25% of the scanning time spent
acquiring data, we have 2.5 µs/pixel of IFD recording time.
Doppler shifts in ODT typically range from 0.1 to 3 kHz;
shifts below 0.1 kHz are assumed to be insignificant. Over
the range of Doppler frequencies, 2.5 µs of IFD recording
time implies that we would have less than 0.0075 periods of
the Doppler shift.  The short time of the acquisition and the
noise of the recorded IFD severely limit the resolution of
STFT-based algorithms.

In this paper, we present a new velocity estimation for
next generation ODT systems that can detect 0.1 to 3 kHz
Doppler shifts in a 1 MHz carrier wave using data records of
only 1 µs obtained in a noisy environment. To process 5
frames/s, the algorithm requires 26 million multiply-
accumulates/s, so it can be implemented in real-time in
software. The primary contributions of this paper are:

1. A new low-complexity nonlinear algorithm resolving
Doppler shifts on the order of 1 kHz in a 1 MHz
carrier wave, and

2. An analysis of the algorithm’s resolution based on
AM-FM modeling of the interference fringe data.

An AM-FM model appropriately describes the behavior of
the IFD, with the constraint that the amplitude and phase
modulation functions are smooth. The IFD amplitude
defines the structural ODT image of the observed tissue.
The phase provides information used to form the ODT
velocity image. The rationale for using an AM-FM model is
the wealth of knowledge on the subject and the applicability
of many published demodulation techniques, such as the
energy separation algorithms in [7].

II. Modeling
Figure 2 shows the model of an ODT system. X(f) is the

Fourier transform of the source signal; IFDn(t) is the
recorded IFD; n(t) is independent, identically distributed
Gaussian noise with zero mean and variance σ2; fc is the
signal carrier frequency; fd is the Doppler shift; and fc+fd is
the mean of the Doppler spread of variance σd

2.

The model for IFDn(t) is based on the physics of the
light-tissue interaction [8].  Because light incident on the
sample is well approximated by a Gaussian beam, scattering
from moving constituents (e.g., red blood cells) gives a
range of Doppler shifts that are normally distributed about a
center frequency, fd.  From the results of Monte Carlo
simulations of light scattering in tissue, we write the IFDn(t)
as a superposition of interference fringes due to each
incoming light direction in the incident Gaussian beam with
amplitude Wi, frequency shift fi, and a random phase
uniformly distributed between zero and 2π: [8]
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∞
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Here, ϕi  is the initial phase which is uniformly distributed
from 0 to 2π; Wi are samples of a Gaussian-shaped function,
and fi is a frequency shift due to multiple scattering of light
in the sample, and the spacing between the successive
components in the frequency domain is ∆f.

In (1), assuming small ∆f and ignoring additive noise,

( ) ( ) ( ) ( )[ ] ( )dcn ffffjfWfufIFD −−∗= δξexp    (2)

where ( ) fifi fWW ∆== , ( ) fifi f ∆== ξϕ , ( )fu is the step

function, and * denotes convolution.  Since IFDn(t) is
narrowband, it can be described using an AM-FM model:

( ) ( ) ( )[ ] ( )tnttfftAtIFD dcn +++≅ φπ )(2cos            (3)
The AM-FM model is used in speech recognition [7], and
image processing [9], among other fields.  One of the first
references on the subject is by Carson [10].

By ignoring the additive noise term, (3) becomes

( ) ( ) ( ) ( )[ ] ( )dcn fffffAfufIFD −−∗Θ∗= δ
2

1
      (4)

Figure 2: Signal processing in an optical
Doppler tomography system.
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where ( ) ( ){ }tAfA ℑ= , ( ) ( )[ ]{ }fjf φexpℑ=Θ  such that

{ }xℑ  denotes the Fourier transform operator on x.
Hence, the models for IFDn(t) given by (1) and (3) can be

tied together using the relationship

( ) ( )[ ] ( ) ( )[ ]{ }fjtwtjtA ξφ exp*2exp 1−ℑ=                   (5)

where ( ) ( ){ }fWtw 1−ℑ= and both the amplitude function

A(t) and the phase function φ(t)  are slowly-varying
functions compared to cos(2πfct).  Their bandwidth accounts
for the Doppler spread in the interference fringe data.
Neither A(t) nor φ(t) are known when the IFDn(t) is
recorded.

III. Proposed Algorithm
If the structural orientation of the illuminated sample does
not change over a short time interval ∆t, then
φ(t) = φ(t-∆t). In the case of blood flow,
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We use ∆t=1 ms in this paper.
We correlate of IFDn(t) and IFDn(t-∆t) to eliminate the

unknown initial phase, φ(t). The cross-correlation

( ) ( )( )[ ]tfftR dcT ∆−+∝∆ τπτ 2cos,                         (6)

Within the short time interval ∆t, the Doppler shift fd will
cause a phase shift. The location of the peak of the cross-
correlation will give the time difference, τmax, between the
waves, and thus the phase difference between the two IFD’s.
If we assume only one cycle of RΤ(τ,∆t), then the estimate
of fd is
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               (7)

where
( )tRT ∆= ,maxargmax ττ

τ
.

The algorithm does not estimate each particular frequency
component present in the IFDn(t), but instead finds their
average, which is exactly the desired Doppler shift assuming
a symmetric Fourier spectrum around the carrier frequency
fc. Finding this estimate for every pixel produces an ODT
velocity image of the sample.

Equation (7) produces a value for a single pixel. The
histogram of the estimates of Doppler shift for 10,000 trials
for a single pixel is shown in Figure 3. The histogram is
roughly Gaussian shaped with a mean of 300 Hz, which was
the actual value of the Doppler shift in all of the trials.

As shown in Figure 3, the estimated value of a particular
pixel can deviate from its true value. This may produce
spurious peaks in the ODT velocity image of the sample.
However, the magnitude of the flow direction vector should
change smoothly across the image due to the mechanics of
uncompressible fluid flow.  Thus, we can use the high

spatial correlation between pixels to improve the estimate of
the flow vectors.  The spatial correlation will eliminate
spurious peaks. The algorithm is given in Figure 4.

IV. Performance
From (7) the range of detectable Doppler frequencies for a
single pixel is

5.05.0 ≤∆<− tf d                              (8)
This limited frequency range causes a wrap-around effect in
the phase, which for the experiment in Figure 3 is –500 Hz.
Using one-dimensional phase unwrapping techniques [11]
can significantly expand the range in the constraint given by
(8). This constraint can be further relaxed with a two-
dimensional phase unwrapping technique that uses the
gradient in both dimensions.

The frequency resolution ∆fd of the estimate obtained
using (7) is

Figure 3: Histogram of df̂  at one pixel for 10,000

trials. The actual df was 300 Hz with ∆t = 1 ms.

1. For each pixel,
a. Record IFDn(t) for a pixel.
b. Record IFDn(t+∆t) the same pixel.
c. Find the cross-correlation, RT(τ+∆t) of
IFDn(t) and IFDn(t+∆t),).
d. Find location of first peak of RT(τ+∆t).

e. Obtain the estimate, df̂ , of the grayscale
value of the pixel from (7).

2. Repeat Step 1 for all pixels in the ODT
velocity image.

3. Perform 3 × 3 median filtering on the ODT
velocity image.

4. Obtain the estimate by performing 2-D phase
unwrapping on the ODT velocity image.

Figure 4: Outline of the proposed algorithm.
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where fs is the sampling frequency. The frequency
resolution of our algorithm depends on parameters fc, fs, and
∆t, which are known in practice and preset in simulations;
e.g., with fs=100 MHz, fc=1 MHz  and ∆t=1ms, we obtain
∆fd=10 Hz.

The ODT system acquires Ns samples per pixel. The
computational cost of the algorithm is dominated by the Ns

2

multiplications in the cross-correlation and the Ns

comparisons needed to find the maximum of the cross-
correlation.  The memory cost for this algorithm is 2Ns; i.e.,,
two sets of Ns samples that are ∆t time units apart.

V. Simulation Results
We simulate IFD data that represents a blood vessel of

200 µm radius with its center in the center of the image. The
image size is 100 × 100 pixels, with each pixel being 10 ×
10 µm. All of the results are obtained using data simulated
via the physical model in (1) and reconstructed via the AM-
FM model in (3). In the simulated data, the carrier
frequency is 1 MHz and ∆t is 1 ms. The results presented in
this section are obtained using the data additive white
Gaussian noise yielding an SNR of -3 dB. The algorithm
gives high accuracy in the presence of significant noise
because the noise does not correlate across shifts in the
interference fringe data.

The dashed line in Figures 5 and 6 shows the ideal curve
of the blood flow. To reconstruct the vessel in Figure 5, we
used 32 bits of precision with 100 MHz sampling rate. At
this sampling rate, recording time of 1 µs (the period of fc)
produces 128 samples/pixel. Figure 6 shows the same vessel
simulated using 4 bits of precision with 12.5 MHz sampling
rate (1 µs ⇔16 samples/pixel). The corresponding data rate
would be 1.6 million samples/s for 5 frames/s. At this rate,
the algorithm would require 26 million multiply-accumulate
operations/s. Hence, the algorithm could be easily
implemented in real-time in software.

Figure 7 shows the noise sensitivity of the algorithm.  An
image of a single blood vessel was simulated many times
with varying amounts of noise in the interference fringe
data, and the error in the reconstructed image was measured.
This graph shows that good results are obtained for even
significant amounts of noise.  In fact, accurate image
reconstruction is possible until the noise power is equal to
the signal power.

VI. Conclusions
We have developed a new velocity estimation algorithm for
the next generation of ODT systems, which will operate at
several frames per second.  Unlike previous ODT
algorithms based on the Fourier transform, this nonlinear

algorithm can detect a very small Doppler shift (e.g. a 100
Hz shift in a 1 MHz signal) with data from only a tiny
fraction of carrier frequency’s period (e.g. 0.1% of a period
of the carrier frequency). This algorithm, derived from an
AM-FM model of the interference fringe data in optical
Doppler tomography (ODT) systems, is able to quantify the
velocity with remarkable accuracy even with the very short
data records in fast ODT systems.  Because of the
correlation used in the algorithm, we are able to obtain
accurate results even for low SNR (-3 dB).  Furthermore,
the algorithm is computationally efficient and can be
implemented real-time software for the next generation of
high-speed optical Doppler tomography systems operating
at 1-10 million samples/s.
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Figure 5: Sampling at 100 MHz using 32 bits/sample
and double-precision floating-point arithmetic:
(a) 3-D reconstruction of the blood flow, and
(b) axial profile of the estimate
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Figure 6: Sampling at 12.5 MHz using 4 bits/sample
and 8-bit arithmetic:
(a) 3-D reconstruction of the blood flow, and
(b) axial profile of the estimate

Figure 7: Noise sensitivity


