High-Speed Velocity Estimation in Optical Doppler Tomography

Embedded Signal Processing Laboratory Dept. of Electrical and Computer Engineering The University of Texas at Austin

Milos Milosevic, Wade Schwartzkopf, Thomas E. Milner, Brian L. Evans, Alan C. Bovik

http://signal.ece.utexas.edu/

- Introduction -Optical Coherence Tomography

• 3-D imaging of tissue by laser scanning

- Introduction -

Optical Coherence Tomography

- Experimental setup Michelson interferometer
- Splitter correlates reflected and backscattered signals
- Scan depth controlled by mirror position

- Introduction -Need for Speed

• Higher acquisition speed

Old Systems	New Systems
0.005 frames/s	10 frames/s
(1 frame every 3 min)	
0.02 s/pixel	10 µs/pixel
$f_{\rm c} = 5 \rm kHz$	$f_{\rm c} = 1 \rm MHz$
$f_{\rm s} = 20 \ \rm kHz$	$f_{\rm s} = 50 - 100 {\rm MHz}$
10 cycles/pixel	0.0013 cycles/pixel
@ 0.5 kHz min	@ 0.5 kHz min
Doppler shift	Doppler shift
Slow	Fast

- Background -Structural and Velocity Images

- Structural \Rightarrow map of tissue density
- Velocity \Rightarrow map of fluid flow

Structural Velocity

- Background -Structural and Velocity Images

- Structural image : from amplitude of received signal
- Velocity image : from Doppler shift in received signal

The Faster the Better

- Time of acquisition/pixel = $t_a \propto 1/(f_c + f_d)$ seconds
 - $-f_d$ is a function of fluid motion
 - $-f_c$ is a free variable under operator control
- Increasing f_c decreases time of acquisition/pixel
- Large $f_c \to f_d \ll f_c$
- Hard to detect f_d : ~ 0.0013 cycles of f_d in t_a
- Linear methods (e.g. based of the FFT) do not have enough frequency resolution

Proposed Algorithm

- 1. For every pixel in the ODT velocity image,
 - a. Record $IFD_n(t)$ for a pixel.
 - b. Record $IFD_n(t+\Delta t)$ for the same pixel.
 - c. Find cross-correlation of $IFD_n(t)$ and $IFD_n(t+\Delta t)$, $R_T(\tau+\Delta t)$.
 - d. Find location of the first peak of $R_T(\tau + \Delta t)$.
 - e. Estimate Doppler shift \Rightarrow grayscale pixel value
- 2. Perform 3×3 median filtering on the ODT velocity image.
- 3. 2-D phase unwrapping to refine Doppler shift estimate.

• Estimate Doppler shift for a single pixel

$$\hat{f}_{d} = \operatorname{mod}(f_{d}\Delta t, 1) = \frac{\operatorname{mod}(f_{d}\Delta t, 1) - f_{c}\tau_{\max}}{\tau_{\max} - \Delta t}$$

where

$$\tau_{max} = \arg \max R_{T}(\tau, \Delta t)$$

Proposed Algorithm - Reliability

Algorithm Limitations

• The range of detectable phase shifts/pixel

$$-0.5 < f_d \Delta t \le 0.5$$

- Limited range causes phase wrap-around
- The algorithm employs phase unwrapping
- The algorithm frequency resolution is

$$\Delta f_d = \frac{f_c}{f_s \Delta t}$$

Simulated Results

• Computation: 32 bits/sample, double precision floating point; Sampling: 128 samples @ $f_s = 100$ MHz; Noise: SNR = -3 dB

Simulated Results

• Computation: 4 bits/sample, 16 bit arithmetic; Sampling: 16 samples @ $f_s = 12.5$ MHz; Noise: SNR = -3 dB

Conclusions

- Velocity estimation robust to
 - SNR
 - Bit precision in data acquisition
 - Data record length
- Computationally efficient algorithm
 - Real-time implementation on a high-end digital signal processor or PC
 - Fixed-point computation using 16-bit arithmetic