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ABSTRACT

Synthetic aperture radar (SAR) systems are mounted
on airplanes and satellites, which have limited downlink
and storage capacity, yet SAR image sequences may
be produced at rates of several Gbps. Compression is
di�cult because SAR images contain signi�cant high-
frequency information, such as terrain boundaries and
terrain texture. In assessing the quality of compressed
images, peak signal-to-noise ratio and mean-squared
error are inadequate because they assume that distor-
tion is solely due to image-independent additive noise.
In this paper, we provide objective measures to assess
the visual quality of SAR images compressed by JPEG
and SPIHT coders. The human visual system responds
di�erently to linear distortion and noise injection (non-
linear distortion plus additive noise). Our key contri-
butions are that we (1) decouple and quantify the lin-
ear distortion and noise injection in JPEG and SPIHT
coders, and (2) introduce a new edge correlation quality
measure which we use to quantify nonlinear distortion.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is an active remote
sensing system which has applications in agriculture,
ecology, geology, oceanography, hydrology, and target
recognition [1]. Compression techniques have been ap-
plied to SAR images because of limited storage and
downlink capacity on mobile platforms. SAR images
contain multiplicative speckle noise [1] and signi�cant
high-frequency information such as terrain boundaries
and terrain texture [2]. Optical images contain a sig-
ni�cant amount of low-frequency information because
they are generally oversampled. Image compression
techniques optimized for optical images may produce
extremely undesirable artifacts for SAR images.

Quality measures are useful in evaluating the per-
formance of compression techniques. As in optical im-
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ages, mean squared error (MSE) and peak signal-to-
noise ratio (PSNR) measures have been applied to SAR
images [3, 4, 5]. Although these measures are sim-
ple to compute, they assume that the residual image
(which is the di�erence between the decompressed and
original images) is essentially independent noise. Un-
fortunately, compression degrades the original image
by nonlinear distortion, linear distortion, and additive
noise. Linear distortion causes the residual image to be
correlated with the original image, which violates the
assumption made by MSE and PSNR measures [6].

Other quality measures have been applied to block
quantization, vector quantization, and discrete cosine
transform compression for SAR images [2, 7]. Kuper-
man and Penrod [7] evaluate impulse response, contrast
ratio, automatic target cueing, and image interpretabil-
ity ratings. They �nd no signi�cant statistical corre-
lation between image quality and MSE or SNR mea-
sures. After evaluating 16 candidate measures, Dut-
kicwicz and Cumming [2] form a vector of seven rele-
vant quality measures| data statistics, change in data
histogram, error image, error image spectra, radiomet-
ric linearity, point target analysis, and MSE.

In this paper, we model an image coder as a linear
�lter plus noise injection to mimic the way that the hu-
man visual system (HVS) responds separately to these
e�ects [6]. Noise injection includes nonlinear distortion
and additive noise. Based on this model, we develop
three quality measures for SAR images compressed by
Joint Photographic Experts Group (JPEG) [8] and Set
Partitioning in Hierarchical Trees (SPIHT) [9] image
coders. The contributions of this paper are:

� We decouple and quantify linear distortion and
noise injection in JPEG and SPIHT coders.

� We introduce a new edge correlation measure to
quantify distortion of edges and creation of false
edges in compressed SAR images.

� We assess the quality of JPEG and SPIHT image
coders when applied to SAR images.



Figure 1: Despeckled SAR image of the city of Houston,

Texas, USA.

Figure 2: SAR image in Fig. 1 with additive white noise

(PSNR is 23.1 dB with respect to Fig. 1).

2. BACKGROUND

Fig. 1 shows a despeckled SAR image. Figs. 2{4 are
formed by adding white noise to, lowpass �ltering, and
adding highpass noise to Fig. 1, respectively. Relative
to Fig. 1, Figs. 2 and 4 have comparable quality, but
Fig. 3 has lower quality than either Fig. 2 and 4. Yet,
Figs. 2{4 have the same PSNR (and MSE) values.

Human visual systems respond separately to fre-

quency distortion and noise injection in still images
[6]. We model an image coder as a linear �lter plus
noise injection (uncorrelated noise), as shown in Fig.
5 [6]. We de�ne a distortion transfer function (DTF)
and an SNR measure. The DTF is the deviation of the
�lter's frequency response H(!1; !2) from an all-pass
response: 1�H(!1; !2) [10].

Because we assume human interpretation of the im-
ages, we incorporate an HVS model into the quality
measures. For simplicity, we use a linear shift-invariant
HVS model. We use the model's frequency response,
a.k.a. a contrast sensitivity function (CSF), as a per-
ceptual weighting function in the frequency domain

Figure 3: A lowpass �ltered version of the SAR image in

Fig. 1 (PSNR is 23.1 dB with respect to Fig. 1).

Figure 4: SAR image in Fig. 1 with additive highpass noise

(PSNR is 23.1 dB with respect to Fig. 1).

[6, 10]. A CSF approximates the visibility of individ-
ual Fourier components of an image. Using the lowpass
CSF C(!1; !2) in [6, 10], which is plotted in Fig. 6(a),
we de�ne a perceptually weighted SNR (WSNR) as

WSNR = 10 log
10
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X(!1; !2) and D(!1; !2) are the discrete Fourier trans-
forms of the original and noise images, respectively.
The weighted mean of the DTF by the CSF gives a
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Figure 5: Linear model of compression-decompression.



linear distortion measure (LDM): [10]

LDM =
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3. ESTIMATING THE LINEAR FILTER

AND NOISE INJECTION

We apply the discrete Fourier Transform (DFT) to sub-
blocks to estimate the linear �lter. To reduce false
edge e�ects along the image boundaries, we reect the
512 � 512 original and decompressed images in both
axes to form 1024 � 1024 images. We compute the
DFT of the 1024� 1024 images. Then, we divide the
frequency domain into 256 non-overlapping blocks of
size 64 � 64. We assume that the transfer function is
constant in each block and estimate its value for each
block independently. For each DFT block, we rear-
range the pixels into column vectors denoted x and y
for the original and decompressed images, respectively.
Finally, we compute the optimal solution in the least
squares sense [11] for H, which is the frequency re-
sponse of the �lter for each block, such that the error
vector e = y �Hx is uncorrelated with x:

eHx = (y �Hx)Hx = 0 =) H =
yHx

xHx

The resulting error vector is the uncorrelated noise.

4. EDGE CORRELATION MEASURE

The noise image is uncorrelated with the original im-
age, but not independent. As a result, nonlinear dis-
tortion is included in the uncorrelated noise. Nonlin-
ear distortion, such as blocking artifacts and mosquito
noise, is more signi�cant at high compression ratios.
Since these artifacts are predominantly high frequency
e�ects, we �lter the decompressed images to extract the
edge information so that the artifacts are more notice-
able and easier to measure. To extract an edge image,
we use a 3 � 3 discrete approximation of a Laplacian
operator. The correlation of the edge images is used
as a measure of high-frequency distortion which con-
sist primarily of non-linear distortion. An edge image
emphasizes terrain boundaries, which are key sources
of information in interpreting SAR images. The cor-
relation between edge images of the original and de-
compressed images measures the degradation of this
important information in a SAR image.

5. QUALITY ASSESSMENT

For simulation, we use JPL Spaceborne Imaging Radar
C/X Band SAR images [12]. We crop them to 512�512
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Figure 6: (a) A Contrast Sensitivity Function of the human

visual system, (b) the computed linear model for JPEG at

1.8 bits/pixel, and (c) the computed linear model for SPIHT

for 1.8 bits/pixel.

Image PSNRWSNR Error LDM Edge

(dB) (dB) corr. corr.

without the proposed model

white noise added 23.1 - 0.0089 - 0.74

highpass noise added 23.1 - 0.0082 - 0.73

linearly distorted 23.1 - 0.5919 - 0.42

with the proposed model

white noise added 23.1 21.5 1�10�6 0.009 0.74

high-pass noise added 23.1 26.8 5�10�8 0.008 0.73

linearly distorted 44.1 41.0 9�10�6 0.819 0.42

Table 1: Quality measures for images in Figs. 2{4.

8-bit grayscale sub-images and compress 7 sub-images
using JPEG and SPIHT coders. The images have high-
frequency content of rivers, cities, and volcanos, and
low-frequency content of oceans and plains.

Table 1 gives the quality measures for the images
in Figs. 2{4. The upper part of Table 1 shows that the
residual for the lowpass �ltered image in Fig. 3 is highly
correlated with the original image in Fig. 1. Therefore,
PSNR and MSE measures are not valid for this im-
age. The lower part of Table 1 shows quality measures
calculated after decorrelating the error image from the
original according to Section 3. After decorrelation, the
PSNR value for the lowpass distorted image is higher
than that for the other images because no noise has
been added to this image. The reason why the PSNR
is not in�nite is that the estimation of DTF is not per-
fect. For noisy images, the linear distortion, PSNR,
and WSNR are relatively small.

Although the highpass noise added image looks bet-
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Figure 7: PSNR and WSNR for JPEG and SPIHT coders

with and without using the proposed model in Fig. 5.

ter than the white noise added image in Figs. 3 and 4,
they have the same PSNR. The WSNR, however, is
consistent with visual quality. PSNR and WSNR do
not measure the absolute quality of the images, but in-
dicate the amount of noise in each image. The edge
correlation is lower for the lowpass �ltered image since
the lowpass distortion operation smoothes the edges.

Figs. 6(b) and 6(c) show the frequency response of
the linear models of JPEG and SPIHT coders operating
at 1.80 bits/pixel. The linear models capture the low-
pass bias in JPEG encoders and the subband decom-
position used in SPIHT. The model for SPIHT shows
three subband levels with higher frequency bands being
quantized to fewer bits.

Figs. 7-9 show rate-distortion curves for the SAR
image in Fig. 1. PSNR is higher for SPIHT than JPEG
at all compression ratios; WSNR results are closer.
At compression ratios above 6, WSNR performance is
comparable, as veri�ed by visual inspection, because
SPIHT generates more low-frequency noise. The visual

e�ect of the noise is comparable to that of JPEG, even
though MSE is lower. As shown in Fig. 8 and expected
from the appearance of the linear models in Figs. 6(b)
and 6(c), SPIHT introduces less linear distortion than
JPEG for compression ratios of 3 and higher.

The correlation between the decompressed and orig-
inal images is close to one for both compression tech-
niques, with SPIHT being better than JPEG, as shown
in Fig. 9. For correlation of edge information, SPIHT
outperforms JPEG, which is consistent with the degree
of nonlinear distortion observed.

Figs. 10-13 show results for four di�erent images.
By judging from PSNR alone in Fig 10, we conclude
that SPIHT outperforms JPEG by 7 dB for low and
2 dB for high compression ratios. By using the pro-
posed measures in Figs. 11{13, however, we can quan-
tify noise, linear distortion and edge preservation in-
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Figure 8: Linear Distortion Measure for Houston.
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Figure 9: Image Correlation for Houston.

dividually, and compare the techniques for each mea-
sure. By comparing Figs. 10 and 11 for low compression
ratios, such as 2, the di�erences between JPEG and
SPIHT for both PSNR and WSNR are approximately
7 dB. For the three images in these �gures, the di�er-
ences in the WSNR for JPEG and SPIHT are not as
large as the di�erences in PSNR when the compression
ratio is high, e.g. 10:1. At higher compression ratios,
linear distortion and edge degradation become signif-
icant. If we had two closely performing compression
schemes, e.g. less than one dB di�erence, then PSNR
could be misleading because it gives a biased measure
that is inconsistent with visual quality.

6. CONCLUSION

Lossy image compression subjects an image to linear
distortion, nonlinear distortion, and additive image-
independent noise. The human visual system responds
to linear distortion and noise injection in still images
separately. So, we model the cascade of lossy image
compression and decompression as a linear �lter fol-
lowed by additive uncorrelated noise. The uncorre-
lated noise consists of nonlinear distortion plus addi-
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Figure 10: PSNR di�erence between SPIHT and JPEG for

three images.
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Figure 11: WSNR di�erence between SPIHT and JPEG

for three images.

tive noise. We introduce a new edge correlation mea-
sure that quanti�es the nonlinear distortion in which
true edges are degraded and false edges are created.
We then assess the visual impact of the linear distor-
tion, nonlinear distortion, and additive noise in SAR
images compressed by JPEG and SPIHT image coders.
We found that SPIHT outperforms JPEG in all three
measures.
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Figure 12: Linear Distortion Measure for SPIHT and

JPEG on three images.
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