Speaker Localization for Far-field and Near-field Wideband Sources Using Neural Networks

Güner Arslan¹

F. Ayhan Sakarya^{2,3}

Brian L. Evans¹

¹Embedded Signal Processing Laboratory, Dept. of Electrical and Computer Engineering, The University of Texas at Austin

²Dept. of Electronics and Telecommunication Engineering, Yý ldý z Technical University ³Wireless Technology Laboratory, Lucent Technologies

9

Introduction

- Speaker localization
 - Videoconferencing: steer camera to speaker
 - Acoustic echo cancellation: steer beam to speaker
- Spatial array source localization techniques
 - Computationally intensive
- Spatial array neural network techniques
 - Massive parallelism
 - Far-field assumption
 - Narrowband assumption

Feature Selection

- Desired properties of feature vectors
 - Mapping to desired DOAs
 - Independent of phase, frequency, bandwidth, and amplitude
 - Easy to compute

- Cross-power spectrum between all pairs of neighboring sensors
 - Includes phase difference between sensors
 - Depends on frequency
 - computationally intensive

• Normalized instantaneous cross-power spectrum

$$\phi_{m,m+1}(\Omega_i) = e^{-j\Omega_i(\tau_m - \tau_{m+1})}$$

DOA \iff Time delay \iff Phase difference \iff Cross-power spectrum

- Eliminates amplitude dependence
- Calculate at *K* different frequencies
- Skip averaging
 - rough estimate

Calculation of Feature Vectors

• Calculate *N*-point FFT at every sensor

7/1/99

- Find the indexes of the *K* largest FFT coefficients in absolute value at the reference sensor
- For every neighboring pair of sensors, complex conjugate multiply the FFT coefficients at these indexes
- Normalize all results with their absolute value
- Construct a vector containing the real and imaginary parts of the results and the index numbers

Array Speech Signal Model

• Signal received by sensor *m* at time index *n*

$$s_{m}[n] = \sum_{k=1}^{N_{s}} a_{k} \cos\left(2\pi \frac{f_{k}}{f_{s}} n - \phi_{k} - 2\pi f_{k} \tau_{m}\right) + v[n]$$

- N_s : Number of frequencies in the wideband signal
 - : The k^{th} frequency (uniform distribution on [200,2000])
- a_k : Random amplitude of k^{th} frequency (uniform distribution on [0,1])
- ϕ_k : Random phase of the k^{th} frequency (uniform distribution on $[0,2\pi]$)
 - : Sampling frequency

 f_k

 f_{s}

 τ_m

7/1/99

- : Time delay between the reference sensor and m^{th} sensor
- v[n] : White Gaussian noise

- Training data
 - Vary DOA from -90° to 90° with 5° increments
 - Include -90° but exclude +90° because of ambiguity
 - Use 100 independent sets of 128 snapshots for each DO
- Training
 - Fast backpropagation for multilayer perceptron neural network
 - Repeat training 10 times with random initial weights
- Testing
 - 100 independent tests
 - Compute error as difference between estimated and real DOA
 - Average absolute error for DOA from -90° to 90° with 1° steps

Error Distribution

Error measure

7/1/99

- Average absolute error over 100 independent tests
- Most error occurs near ____ -90 and +90 degrees due to ambiguity at -90° and 90°

• 128 snapshots. 6 dominant frequencies. 0.05 m inter-sensor spacing

• 10 hidden units, 4 sensors, 0.05m inter-sensor spacing

Training

• 4 sensors, 10 hidden units, 4 sensors, 6 dominant frequencies

7/1/99

Computational Requirements

Multiplication	$2MN \log_2 N$	+ 4 <i>KM</i> +	((2M-1)K+1)L
Addition	$2MN \log_2 N$	+ 4 <i>KM</i> +	((2M-1)K+1)L
Division	0	+ K(M-1) +	0
Lookup table	No	No	Yes
	N-point Fast Fourier Transform at M sensors	Instantaneous cross- power spectrum estimation	Multilayer perceptron forward propagation

• For M=4, N=128, K=6, L=10, $f_s=8000$ Hz : 1 MFLOPS/s

IEEE Workshop on Nonlinear Signal and Image Processing

13

9

7/1/99

Conclusion

- Localization for near-field and far-field speakers
- Choose instantaneous cross-power spectrum samples as feature vectors
- Design a neural network to map feature vectors to DOAs
- Estimate DOAs with average error of less than 6°
- May be implemented in real-time in software of hardware
- Approach could be generalized for direction finding of non-speech signals

