
Optimum Channel Shortening for Discrete Multitone Transceivers

Güner Arslan, Brian L. Evans, and Sayfe Kiaei The University of Texas at Austin

- Problem
 - Design an FIR equalizer that optimizes channel capacity
- Motivation
 - Distribution of ISI power in frequency affects capacity
- Solution
 - Derive cost function for ISI power as function of equalizer taps
 - Solve constrained quadratic optimization problem
- Contributions
 - Decompose equalized channel into signal, noise, and ISI paths
 - Model subchannel SNR based on this decomposition
 - Develop a design method to maximize subchannel SNR
- Results
 - Generalize maximum shortening SNR with frequency weighting
 - Outperforms best methods by up to 18% for ADSL channels

Introduction

- Wireline discrete multitone modulation
 - Multicarrier modulation by using FFT
 - Add cyclic prefix between symbols to fight intersymbol interference (ISI)
 - FIR time-domain equalizer (TEQ) shortens channel length to be less than cyclic prefix length

- Problem:
 - Design a TEQ that optimizes channel capacity
- Solution
 - Derive cost function for ISI power as function of TEQ taps
 - Solve constrained quadratic optimization problem

Channel Capacity

• Multicarrier channel capacity

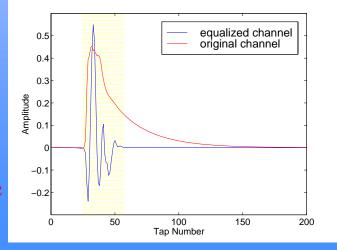
$$b_{DMT} = \sum_{i=1}^{N/2} \log_2 \left(1 + \frac{\text{SNR}_i}{\Gamma} \right) = N \log_2 \left(1 + \frac{\text{SNR}_{geom}}{\Gamma} \right)$$

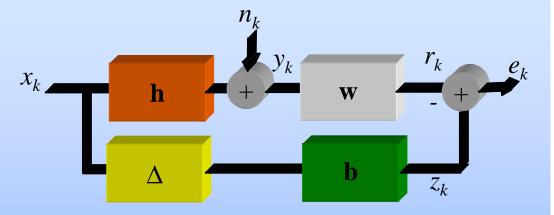
N: # subchannels SNR_i : SNR in subchannel *i* Γ : SNR gap

$$\operatorname{SNR}_{geom} = \Gamma \left(\left[\prod_{i=1}^{N} \left(1 + \frac{\operatorname{SNR}_{i}}{\Gamma} \right) \right]^{1/N} - 1 \right)$$

- Previous methods *do not* maximize channel capacity
 - Minimum mean squared error method [Chow & Cioffi 1992]
 - Maximum shortening SNR method [Melsa, Younce, Rohrs 1996]
 - Maximum geometric SNR method [Al-Dhahir & Cioffi, 1996]

Minimum Mean Squared Error (MMSE) Method


- Chose length of b_k to shorten length of $h_k^* w_k$
- Minimize MSE so that $h_k * w_k \cong b_{k-\Delta}$
- Zeros low SNR bands


Maximum Shortening SNR (SSNR) Method

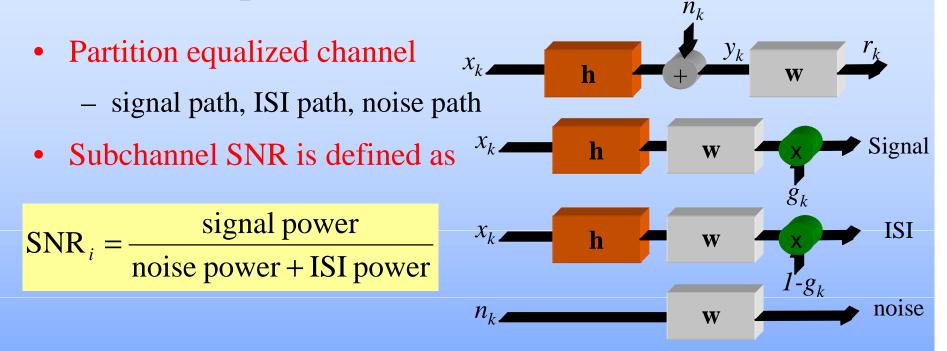
• For each possible window,

 $\max_{\mathbf{w}}(\text{SSNR}) = \max_{\mathbf{w}} 10 \log_{10} \left(\frac{\text{energy inside window}}{\text{energy outside window}} \right)$

- Closed-form solutions exist
- Assume known channel impulse response

Maximum Geometric SNR Method

- Maximize approximate geometric SNR
- Keep MSE smaller than MSE_{max}
- Disadvantages
 - Subchannel SNR definition ignores ISI
 - Objective function ignores interdependence of **b** and **w**
 - Requires solution of nonlinear constrained optimization problem
 - Has the same drawbacks as the MMSE method
 - MSE_{max} has to be tuned for different channels


$$\mathrm{SNR}_{\mathrm{i}} = \frac{S_x |B_i|^2}{S_{n,i} |W_i|^2}$$

$$\left|\boldsymbol{B}_{i}\right| \approx \left|\boldsymbol{H}_{i}\right| \left|\boldsymbol{W}_{i}\right|$$

 $\begin{aligned} &|\mathbf{H}_{i}|: \text{Channel gain in } i^{\text{th}} \text{ subchannel} \\ &|\mathbf{W}_{i}|: \text{Equalizer gain in } i^{\text{th}} \text{ subchannel} \\ &|\mathbf{B}_{i}|: \text{Target gain in } i^{\text{th}} \text{ subchannel} \end{aligned}$

$$\mathbf{SNR}_{geom} \approx \left[\prod_{i=1}^{N} \mathbf{SNR}_{i}\right]^{1/N}$$

Proposed Subchannel SNR Model

Observation: Equalizer affects SNR only by changing the ISI term

signal power =
$$S_{x,i} |H_{signal,i}|^2$$

noise power = $S_{n,i} |H_{noise,i}|^2$
ISI power = $S_{x,i} |H_{ISI,i}|^2$

$$g_{k} = \begin{cases} 1 & d \leq k < d + \upsilon \\ 0 & otherwise \end{cases}$$

Proposed Design Method

• Minimize ISI to maximize SNRs in subchannels

$$\sum_{i=1}^{N/2} S_{x,i} |H_{ISI,i}|^2 = \sum_{i=1}^{N/2} S_{x,i} |\mathbf{q}_i \mathbf{D} \mathbf{H} \mathbf{w}|^2 = \mathbf{w}^T \mathbf{A} \mathbf{w}$$

H: channel convolution matrix
 \mathbf{q}_i : FFT vector

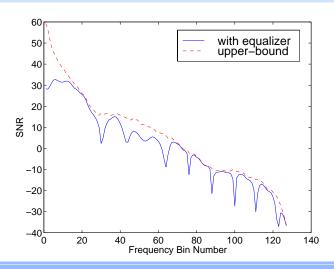
D. diagonal matrix of 1

• Constrain energy of the equalized channel impulse response

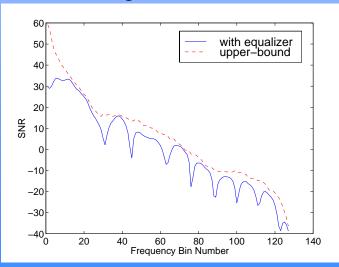
$$\left|\mathbf{H}\mathbf{w}\right|^2 = \mathbf{w}^T \mathbf{B}\mathbf{w} = 1$$

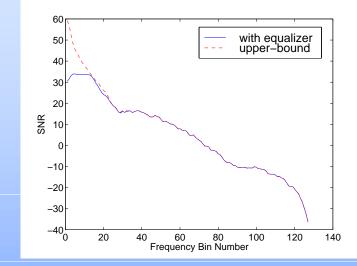
- Optimum in the sense of minimizing total ISI power
 - Equivalent to maximizing subchannel SNRs
 - Equivalent to maximizing channel capacity
- Generalization of the maximum SSNR method
 - Equivalent if $S_{x,i}=1$

Simulation Results

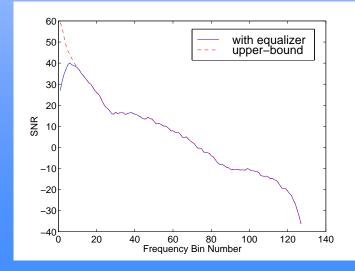

- Proposed method improves bit rate by up to 18% •
- Max SSNR method outperforms max geometric SNR method •
- Similar SNR distribution for MMSE and max geometric SNR •

	. • 1 •			
 MSE is constrained in max 			Simulation Parameters	
geometric SNR method			Channel	CSA loop 1
			Sampling Rate	2.208 Mhz
			Channel length	512 samples
Method	Geometric	Bits /	AWGN power	-110 dBm/Hz
	SNR (dB)	symbol	NEXT noise mask	$10^{-13} f^{3/2}$
Duonogad	15.14	242	MFB	25 dB
Proposed		242	Cyclic prefix	16
Max SSNR	13.90	205	Number of taps	21
Max geo SNR	12.44	166	FFT size	128
MMSE	12.30	162	Margin	6 dB
	12.30	102	Coding Gain	5 dB


Simulation Results


Minimum MSE

Maximum SSNR



Maximum geometric SNR

Proposed method

Conclusion

- Distribution of ISI power in frequency affects capacity
 - ISI in subchannels with low noise decreases SNR dramatically
 - High noise power dominates ISI but keeps SNR unaffected
- Contributions
 - Decompose equalized channel into signal, noise, and ISI paths
 - Model subchannel SNR based on this decomposition
 - Develop FIR TEQ design method to maximize subchannel SNR
- Proposed FIR TEQ design method
 - Generalize max SSNR method by frequency weighting of ISI
 - Outperforms best methods by up to 18% for ADSL channels