
THE EASE BRANCH PREDICTOR

Serene Banerjee, Lizy K. John, and Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin, Austin, TX 78712-1084 USA

fserene,ljohn,bevansg@ece.utexas.edu

ABSTRACT

Wide issue processors with many pipeline stages require

e�cient branch prediction for high throughput. In this

paper, we propose an Embedded, Architecturally Simple

and E�cient (EASE) branch predictor, which performs

well for programs having a small number (100) and a

large number (16,000) of instructions. EASE uses a

combination of a G-share predictor and a one-level pre-

dictor. In EASE, one-level predictor is active until the

G-share predictor warms up. For an example program

of 100 instructions, the one-level, two-level, G-share,

and EASE predictors give misprediction percentages of

36%, 38%, 41%, and 36%, respectively. The corre-

sponding �gures for an example program with 16,000

instructions are 9.5%, 5.6%, 3.3% and 3.3%, respec-

tively. For the gcc benchmark, the EASE predictor

outperforms hybrid and cascaded predictors by giving a

misprediction percentage of 7.89%. When compared to

hybrid and cascaded predictors, the EASE predictor has

fewer counters and no decision circuitry, which makes

it more e�cient to implement in VLSI.

Keywords: branch prediction, hybrid predictor, cas-
caded predictor, superscalar processor

1. INTRODUCTION

Trends in the design of out-of-order superscalar proces-
sors has been to increase the issue width and pipeline
depth. In the mid 1990s, superscalar processors were
generally two-way (such as HP PA 7200) or four-way
(such as HP PA 8200 and UltraSparc), and had 5 or
6 pipeline stages. Today, these �gures have exploded
to 40/64-way superscalar having 10{12 pipeline stages,
such as Intel's Pentium III, Intel's IA64 Itanium, AMD's
Athlon and IBM/Motorola's PowerPC G4 processors.
Pipeline ushes due to branch mispredictions is a seri-
ous hindrance to achieving high performance.

The better methods for branch and target predic-
tion include correlation-based predictors [1, 2], counter-

The authors of this paper are supported in part by the grant

CCR9796098.

based predictors [3], the G-share predictor [4], and hy-
brid predictors [5, 6]. Counter-based methods outper-
form correlation-based methods when the bu�er size is
small [3]. As the bu�er size increases, the improvement
of the correlation-basedmethods over the counter-based
methods increases. The G-share predictor incorporates
randomization to improve prediction accuracy. It ap-
plies a bitwise exclusive OR to the global branch his-
tory and branch address to generate a new random ad-
dress. Hybrid predictors switch between two methods
based on contextual information.

In this paper, we embed a counter-based one-level
predictor into the G-share predictor to create an Em-
bedded, Architecturally Simple and E�cient (EASE)
branch predictor. EASE is not a hybrid predictor.
EASE outperforms a hybrid predictor [5] and a cas-
caded predictor [7], and yields comparable results to
a recent hybrid predictor [8], for the SPEC95 bench-
marks [9, 10]. The EASE simulator is available at

http://www.ece.utexas.edu/~serene/software/ease/

Section 2 reviews di�erent types of branch predic-
tors. Section 3 describes the proposed EASE branch
predictor. Section 4 compares EASE with one-level,
two-level, and G-share branch predictors. Section 5
concludes the paper.

2. BACKGROUND

Many counter-based one-level predictors use a table
consisting of two-bit counters. The table is indexed
with the address of the instruction being executed. De-
pending on the counter value, which corresponds to the
address, the branch is either predicted to be taken or
not taken. If the branch is taken, then we predict its
target address from the branch target bu�er. The per-
centages in this paper refer to the target misprediction
percentages.

Correlation-based two-level predictors use a global
counter to track the history of branch predictions. The

table of counters is indexed with both the branch pre-
diction history and the address bits of the instructions
being executed. The G-share predictor is inherently
a two-level predictor, because it considers history of
the recent branches. Instead of maintaining a two-
dimensional array of counters, however, it uses a one-
dimensional array of counters indexed using the exclu-
sive OR of the PC with the recent branch patterns.

3. PROPOSED PREDICTOR

When program size is small, i.e. the number of instruc-
tions executed is small, the counter-based one-level pre-
dictor has better prediction than the G-share predictor.
Because of the inherent random nature of the G-share
predictor, it takes more time to warm up, and thus suf-
fers from more cold start misses. For small programs,
the program execution is completed by the time that
the G-share warms up.

In the EASE predictor, we embed a small one-level
branch predictor in the G-share predictor. That is, if
the G-share predictor is of size 4K entries, then we are
using a one-level predictor of size 1K entries. When the
processor starts executing a program, it starts with the
one-level predictor. We also de�ne \cuto�" as the num-
ber of instructions after which the one-level predictor
is abolished and prediction is performed with the G-
share predictor. The cuto� is chosen by experimental
means. It was found that if the cuto� were equal to
the number of entries of the one-level branch predic-
tor, then good prediction accuracies were obtained for
the SPEC95 benchmarks. However, for some individual
benchmarks prediction accuracies could be increased by
changing the cuto�. Unlike hybrid predictors, once the
G-share is chosen, it does not go back into the one-level
stage, unless the CPU starts executing a new program
altogether.

Given the size of the G-share predictor, we �nd a
smaller one-level predictor, which when embedded into
the G-share predictor, improves the prediction accu-
racy. The performance is measured over a generic set
of small and large programs. The sizes for the G-share
predictor and the corresponding one-level predictor are
summarized in Table 1.

The input �le to the simulated EASE predictor con-
sists of the PC address, the target address and the in-
formation whether the branch is actually taken or not.
Depending on the PC address, the decision whether the
branch is taken or not is read from the branch history
bu�er. If the branch is predicted taken and is actu-
ally taken, then we obtain the target prediction from
the branch target bu�er. Thus, again depending on
the PC address, the branch target bu�er is read. If the

Size of G-share Size of one-level
predictor predictor

64 entries 16 entries
128 entries 16 entries
256 entries 16 entries
512 entries 128 entries
1024 entries 256 entries
2048 entries 512 entries
4096 entries 512 entries
8192 entries 1024 entries
16384 entries 1024 entries

Table 1: The size of one-level predictor, embedded in
EASE for di�erent sizes of G-share predictors.

predicted target address matches the actual branch ad-
dress, then the prediction is correct. Also, if the branch
is predicted not taken and is actually not taken, we do
not read the branch target bu�er and say that target
prediction was correct. We increment the target pre-
diction accuracy counter for either of the above cases.
The number of mispredictions is then obtained by sub-
tracting the total number of correct target predictions
from the total number of branch instructions executed.

4. EXPERIMENTAL RESULTS

The EASE branch predictor simulator was written in
the C language. At �rst synthetic programs were used
to validate the predictor. For the synthetic programs
speci�c repetitive patterns were assumed for the taken/not
taken information. This pattern was iterated 100 and
16,000 times, respectively, to generate a relatively smaller
and a larger test program. For the large program,
the G-share predictor gives better prediction accuracy,
whereas for the small program, the one-level predictor
gives better prediction accuracy. This is because the
G-share predictor su�ers more cold start misses than
the one-level predictor of the same size.

The EASE predictor utilizes both the randomiza-
tion capability of the G-share predictor as well as the
quick warm-up time of the one-level predictor. So, for
both cases, the EASE predictor gives better prediction
accuracy than the G-share, one-level, and two-level pre-
dictors. The results for one-level, two-level, G-share
and the EASE predictors for these synthetic programs
are summarized in Figs. 1 and 2. For both the small
and the large synthetic programs, the EASE predictor
does better.

We interfaced the EASE branch predictor with
Shade [11], which is a tracer for SPARC applications, to

test the predictor on the SPEC95 benchmarks. Fig. 3
compares the results for gcc with those for a hybrid
predictor [5] and a cascaded predictor [7]. For the gcc
benchmark, the EASE predictor gives better prediction
results.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
35

40

45

50

55

60

65

70

75

Number of entries

%
 M

is
pr

ed
ic

tio
ns

One−level
Two−level
G−share
EASE predictor

Figure 1: Misprediction percentages for one-level, two-
level, G-share, and EASE predictors for a sample 100
instruction program.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

10

20

30

40

50

60

70

Number of entries

%
 M

is
pr

ed
ic

tio
ns

One−level
Two−level
G−share
EASE predictor

Figure 2: Misprediction percentages for one-level, two-
level, G-share, and EASE predictors for a sample
16,000 instruction program.

For the other SPEC95 benchmarks| go, compress,
ijpeg, li, m88ksim, and perl| the misprediction per-
centages obtained with Shade are given by Table 2 and
Fig. 4. The EASE predictor performs comparably for
all of these benchmarks except for go. Hybrid pre-
dictors on average have misprediction percentages of
1-14% for the SPEC95 benchmarks [9, 10]. The EASE

branch predictor, on the other hand has misprediction
percentages of 1.8-18% for the SPEC95 benchmarks.
The EASE predictor yields comparable results for some
of the benchmarks, although it does not do well for the
go benchmark.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
5

10

15

20

25

30

35

40

45

Number of entries

%
 M

is
pr

ed
ic

tio
ns

McFarling
Cascaded
EASE predictor

Figure 3: Misprediction percentages for McFarling's
hybrid predictor, the cascaded predictor, and the
EASE predictor for the gcc benchmark.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

10

20

30

40

50

60

Number of entries

%
 M

is
pr

ed
ic

tio
ns

Go
Compress
Ijpeg
Li
M88ksim
Perl

Figure 4: Misprediction for the EASE predictor for the
SPEC95 benchmarks.

5. CONCLUSION

The EASE branch predictor is comparable in terms of
prediction accuracy but has much simpler architecture
than McFarling's hybrid predictor. The EASE pre-
dictor requires many fewer counters (as our one-level
predictor is smaller in size compared to the G-share

G-share size go compress gcc ijpeg li m88ksim perl

64 entries 50.44 17.83 37.46 13.47 24.27 28.26 40.95
128 entries 44.03 15.03 30.92 11.36 17.64 16.02 32.93
256 entries 37.67 14.22 24.93 10.49 10.97 11.62 24.93
512 entries 31.59 10.16 20.75 9.63 9.20 7.16 17.59
1024 entries 27.13 10.16 16.32 8.64 7.38 5.35 12.75
2048 entries 22.16 10.14 12.94 8.16 6.59 4.09 9.78
4096 entries 20.59 10.13 10.55 8.08 6.39 3.47 8.52
8192 entries 19.04 10.12 8.95 7.99 6.37 3.34 7.82
16384 entries 18.11 10.12 7.89 7.93 6.35 1.84 7.24

Table 2: Misprediction percentages of various benchmarks, with varying size of the G-share predictor, in the EASE
branch predictor. Simulations were done using SimpleScalar, Version 2.0.

predictor). The EASE predictor requires no additional
hardware to make decisions for context switching. The
elimination of context switching also eliminates the de-
lay involved in the decision process.

The EASE predictor outperforms the cascaded pre-
dictor in terms of prediction accuracy and architectural
simplicity. In processors where both speed of execution
and architectural simplicity are crucial, the EASE pre-
dictor serves as a better alternative. The EASE pre-
dictor is also well suited for general-purpose processors
which not only execute larger programs, but at times
have to execute smaller programs as well.

6. REFERENCES

[1] M. Evers, S. J. Patel, R. S. Chappell, and Y. N.
Patt, \An Analysis of Correlation and Predictabil-
ity: What Makes Two-level Branch Predictors
Work," in Proc. ACM/IEEE Int. Sym. on Mi-

croarchitecture, vol. 1, pp. 52{61, June 1998.

[2] P.-Y. Chang, H. Hao, and Y. N. Patt, \Target Pre-
diction for Indirect Jumps," in Proc. ACM/IEEE

Int. Sym. on Microarchitecture, vol. 1, pp. 274{
283, June 1997.

[3] B. Fagin and A. Mital, \The Performance
of Counter- and Correlation-Based Schemes for
Branch Target Bu�ers," IEEE Trans. on Comput-

ers, vol. 44, pp. 1383{1393, Dec. 1995.

[4] S. Onder, X. Jun, and R. Gupta, \Caching and
Predicting Branch Sequences for Improved Fetch
E�ectiveness," in Proc. Int. Conf. on Parallel

Arch. and Compilation Tech., vol. 1, pp. 294{302,
Oct. 1999.

[5] S. McFarling, \Combining Branch Predictors," in
WRL Technical Note, Digital Equipment Corpora-

tion, vol. TM-36, June 1993.

[6] D. Grunwald, D. Lindsay, and B. Zorn, \Static
Method in Hybrid Branch Prediction," in Proc.

Int. Conf. on Parallel Arch. and Compilation

Tech., vol. 1, pp. 222{229, Oct. 1998.

[7] K. Driesen and U. Holzle, \The Cascaded Predic-
tor: Economical and Adaptive Branch Target Pre-
diction," in Proc. ACM/IEEE Int. Sym. on Mi-

croarchitecture, vol. 1, pp. 249{258, Nov. 1998.

[8] M. Evers, P.-Y. Chang, and Y. N. Patt, \Us-
ing Hybrid Branch Predictors to Improve Branch
Prediction Accuracy in the Presence of Context
Switches," in Proc. ACM/IEEE Int. Sym. on Mi-

croarchitecture, vol. 1, May 1996.

[9] S. Manne, A. Klauser, and D. Grunwald, \Branch
Prediction Using Selective Branch Inversion," in
Proc. Int. Conf. on Parallel Arch. and Compila-

tion Tech., vol. 1, pp. 48{56, Oct. 1999.

[10] H. Patil and J. Emer, \Combining Static and Dy-
namic Branch Prediction to Reduce Destructive
Aliasing," in Proc. Int. Sym. on High-Performance
Computer Arch., vol. 1, pp. 251{256, Jan. 2000.

[11] T. Austin and D. Burger, \The SimpleScalar Tool
Set, Version 2.0," in Technical Report, University

of Wisconsin-Madison Computer Sciences Depart-

ment, vol. TR-1342, June 1997.

