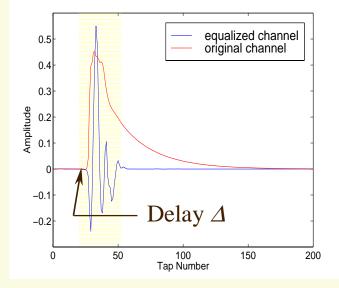
2000 IEEE Digital Signal Processing Workshop

Fast Time-Domain Equalization for Discrete Multitone Modulation Systems

Biao Lu[†], Lloyd Clark[‡], Guner Arslan[†], Brian L. Evans[†]

† Department of Electrical and Computer Engineering The University of Texas, Austin, TX 78712-1084


‡ Schlumberger, Austin, TX, 78726

Problem Statement

Effective channel impulse response

 $h \rightarrow + y \rightarrow w$

- **h**: L_h -tap channel impulse response
- **w**: N_w -tap time-domain equalizer (TEQ)

- Problem: High computational cost of optimal TEQ design during ADSL transceiver initialization
- Goal: Low complexity suboptimal TEQ design

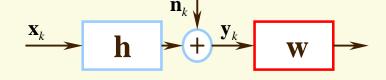
Minimum Mean Squared Error Method

Minimize MSE [Falconer & Magee, 1973][Chow & Cioffi, 1992][Al-Dhahir & Cioffi, 1996]
n_k

 $\mathbf{w} = \begin{bmatrix} w(1) & \cdots & w(N_w) \end{bmatrix}^T$

 $\mathbf{b} = \begin{bmatrix} b(0) & b(1) & \cdots & b(v) \end{bmatrix}^T$

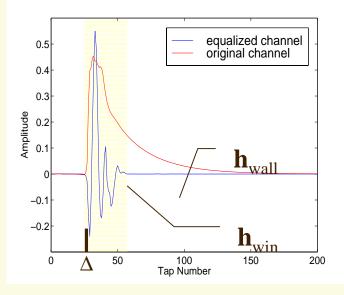
 $MSE = E\left\{ \left(\mathbf{w}^T \mathbf{y}_k - \mathbf{b}^T \mathbf{x}_{k-\Lambda} \right)^2 \right\}$


- Constraints to avoid trivial solution
 - Unit tap constraint: $b(i) = 1, i \in \{0, 1, \dots, \nu\}$

h

- Unit norm constraint: $\|\mathbf{b}\| = 1$ or $\|\mathbf{w}\| = 1$
- Computational cost for each Δ
 - Matrix inversion
 - Eigenvalue decomposition

Maximum Shortening SNR Method


Minimize energy outside a window of length $(\nu+1)$ [Melsa, Younce, & Rohrs, 1996]

Constraint: $\mathbf{w}^T \mathbf{B} \mathbf{w} = 1$

- \checkmark Computational cost for each \varDelta
 - Matrix inversion
 - Cholesky decomposition
 - Eigenvalue decomposition

$$\mathbf{h}_{\text{wall}}^{T} \mathbf{h}_{\text{wall}} = \mathbf{w}^{T} \mathbf{H}_{\text{wall}}^{T} \mathbf{H}_{\text{wall}} \mathbf{w} = \mathbf{w}^{T} \mathbf{A} \mathbf{w}$$
$$\mathbf{h}_{\text{win}}^{T} \mathbf{h}_{\text{win}} = \mathbf{w}^{T} \mathbf{H}_{\text{win}}^{T} \mathbf{H}_{\text{win}} \mathbf{w} = \mathbf{w}^{T} \mathbf{B} \mathbf{w}$$
$$\text{SSNR} = 10 \log_{10} \left(\frac{\mathbf{w}^{T} \mathbf{B} \mathbf{w}}{\mathbf{w}^{T} \mathbf{A} \mathbf{w}} \right)$$

Motivation

MMSE method

- Minimizes MSE both inside window and outside window
- Slow Convergence
- Maximum SSNR method
 - Requires high computational cost
- \checkmark Both methods search for optimal delay \varDelta

 $0 \le \Delta \le L_h + N_w - v - 2 \Longrightarrow 0 \le \Delta \le 512 + 21 - 32 - 2 = 499$

Divide-and-Conquer TEQ

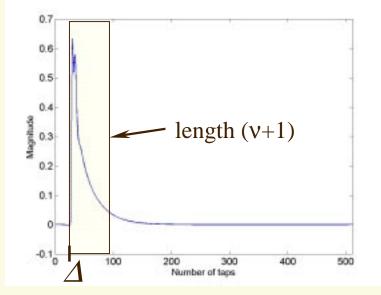
✓ Use Divide-and-Conquer algorithm to minimize h^T_{wall}h_{wall}
 ✓ Divide a N_w-tap TEQ filter into (N_w-1) two-tap TEQs
 ✓ Each two-tap filter is initialized as

$$\mathbf{w}_i = \begin{bmatrix} 1, g_i \end{bmatrix}^{T}$$

 \checkmark Calculate each g_i at *i* th iteration

$$g_{i} = -\frac{\sum_{k \in S} \tilde{h}_{i-1}(k-1)\tilde{h}_{i-1}(k)}{\sum_{k \in S} \tilde{h}_{i-1}^{2}(k-1)}, S = \left\{1, 2, \cdots, \Delta, \Delta + \nu + 2, \cdots, L_{\tilde{h}_{i-1}}\right\}$$

 \checkmark Convolve all two-tap filters to obtain the N_w -tap TEQ


Heuristic Search of Delay Δ

✓ Estimate the optimal delay

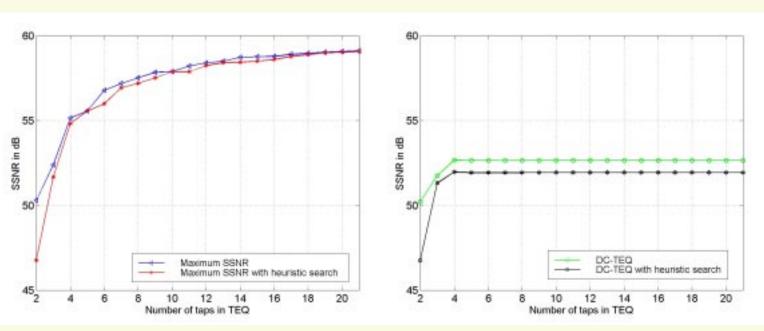
 $\Delta_{\text{ratio}} = \arg \max_{\Delta} \frac{\text{energy inside a window of original } \mathbf{h}}{\text{energy outside a window of original } \mathbf{h}}$

Computational cost

- L_h multiplications
- $(L_h 2)\Delta_{range}$ additions
- Δ_{range} division
- Δ_{range} : the number of Δs to be searched

Computer Simulation

- ✓ Channel: carrier-serving-area digital subscriber loop 1
- ✓ Sampling rate: 2.208 MHz
- ✓ Cyclic prefix: v = 32
- ✓ Number of samples per symbol: 512+32
- ✓ Equalizer taps: $N_w = 21$


Methods	×	+	÷
Maximum SSNR	120379	118552	441
Divide-and-	41000	40880	20
Conquer TEQ			

Computations for each value of delay Δ considered

Simulation Results

DC-TEQ

Maximum SSNR

Heuristic search: 1 dB loss for four or more TEQ taps
 Divide-and-conquer TEQ: 4-8 dB loss of SSNR

Conclusion

Derive Divide-and-Conquer TEQ design method

- Requires fewer computations than maximum SSNR method
- For G.DMT ADSL, $L_h = 512$, v = 32, and $N_w = 21$,
 - » Reduces multiplications and additions by a factor of 3
 - » Reduces divisions by a factor of 22
- Comparable performance to the maximum SSNR method
- Develop heuristic search to find delay
 - Find ∆ by maximizing energy ratio of original channel impulse response
 - Reduces computational complexity in return for minimal performance loss
 - » Loss is 4 dB for 2-tap TEQ and 1 dB for 4-tap TEQ