
VLIW DSP VS. SUPERSCALAR IMPLEMENTATION OF

A BASELINE H.263 VIDEO ENCODER

Serene Banerjee, Hamid R. Sheikh, Lizy K. John, Brian L. Evans, and Alan C. Bovik

Dept. of Electrical and Computer Engineering

The University of Texas at Austin, Austin, TX 78712-1084 USA

fserene,sheikh,ljohn,bevans,bovikg@ece.utexas.edu

ABSTRACT

A Very Long Instruction Word (VLIW) processor and

a superscalar processor can execute multiple instruc-

tions simultaneously. A VLIW processor depends on

the compiler and programmer to �nd the parallelism

in the instructions, whereas a superscaler processor de-

termines the parallelism at runtime. This paper com-

pares TI TMS320C6700 VLIW digital signal processor

(DSP) and SimpleScalar superscalar implementations

of a baseline H.263 video encoder in C. With level

two C compiler optimization, a one-way issue super-

scalar processor is 7.5 times faster than the VLIW DSP

for the same processor clock speed. The superscalar

speedup from one-way to four-way issue is 2.88:1, and

from four-way to 256-way issue is 2.43:1. To reduce

the execution time on the C6700, we write assembly

routines for sum-of-absolute-di�erence, interpolation,

and reconstruction, and place frequently used code and

data into on-chip memory. We use TI's discrete co-

sine transform assembly routines. The hand optimized

VLIW DSP implementation is 61x faster than the C

version compiled with level two optimization. Most

of the improvement was due to the e�cient placement

of data and programs in memory. The hand optimized

VLIW implementation is 14% faster than a 256-way su-

perscalar implementation without hand optimizations.

1. INTRODUCTION

Two factors limit the use of real-time video communi-

cations: network bandwidth and processing resources.

The ITU-T H.263 standard [1, 2, 3] for video commu-

nication over wireless and wireline networks has high

computational complexity. An H.263 encoder includes

the H.263 decoder (minus the variable length decod-

ing) in a feedback path. The H.263 encoder is roughly

three times more complex than an H.263 decoder.

In the H.263 encoder, the most computational com-

plex operation is motion estimation, even when using

e�cient search algorithms. The bottleneck is in the

sum-of-absolute di�erences (SAD) calculations. SAD

provides a measure of the closeness between a 16 �

16 macroblock in the current frame and a 16 � 16

macroblock in the previous frame. Other computa-

tional complex operations are image interpolation, im-

age reconstruction, and forward discrete cosine trans-

form (DCT).

In this paper, we evaluate the performance of the

C source code for a research H.263 codec developed at

the University of British Columbia (UBC) [4] on two

processor architectures. The �rst architecture is a very

long instruction word (VLIW) digital signal processor

(DSP) represented by the TI TMS320C6701 [5, 6]. The

second is an out-of-order superscalar architecture rep-

resented by the SimpleScalar simulator [7].

We evaluate the performance of the superscalar pro-

cessor vs. the maximum number of simultaneous in-

structions executed. We compare the performance of

the C source code on both processor architectures. For

the VLIW DSP implementation, we demonstrate that

manual placement of frequently used data and code

into on-chip memory provides a 29x speedup, whereas

hand coding �ve of the most computational complex

routines gives a 4x speedup. Our hand-coded SAD,

clipping, interpolation, and �ll data C6700 assembly

routines and our SimpleScalar settings are available

from

http://www.ece.utexas.edu/~sheikh/h263/

2. BACKGROUND

2.1. TMS320C6700 VLIW DSP Family

The TMS320C6700 is a oating-point subfamily within

the C6000 VLIW DSP family. The C6000 family has

32-bit data words and 256-bit instructions. The 256-

bit instruction consists of eight 32-bit instructions that

may be executed at the same time. The C6000 depends

on the compiler to �nd the parallelism in the code.



The C6000 family has two parallel 32-bit data paths.

Each data path has 16 32-bit registers, and can only

communicate one 32-bit word to the other data path

per instruction cycle. Each data path has four 32-bit

RISC units: one adder, one 16 � 16 multiplier, one

shifter, and one load/store unit. Each 32-bit RISC

unit has a throughput of one cycle, but its result is

delayed by one cycle for 16 � 16 multiplication, zero

cycles for logical and arithmetic operations, four cycles

for load/store instructions, and �ve cycles for branch

instructions. Every instruction may be conditionally

executed. Conditional execution avoids the delay of

a branch instruction and avoids interrupts from being

disabled because a branch is in the pipeline.

The C6000 family has one bank of program mem-

ory and multiple banks of data memory. Each data

memory bank is single-ported and two bytes wide, and

has one cycle data access throughput. Accessing one

data memory bank twice in the same cycle results in

a pipeline stall and increased cycle counts. The C6701

has 64 kbytes of program memory and 64 kbytes of

data memory. The program memory bank has 2k of

256-bit instruction words, and may be operated as an

instruction cache. Each of the 16 data memory banks

has 2k of 16-bit halfwords.

On the C6700, the pipeline is 11{17 stages, depend-

ing on the instruction. The clock speed varies from 100

to 200 MHz. Power dissipation is typically 1.5{2.0 W,

and the transistor count is less than 0.5 million. All

simulation results for the C6700 were obtained by run-

ning the code on a 100-MHz C6701 Evaluation Module

board. The C6700 simulator does not report pipeline

stalls or memory bank conicts, so running the code on

the board gives the true performance.

2.2. SimpleScalar Superscalar Processor

The SimpleScalar has a superscalar architecture de-

rived from the MIPS-IV. The architecture prefetches

at least four times the number of instructions to be ex-

ecuted and �nds the parallelism between instructions

at run time. All instructions have a �xed length of 64

bits and �xed format, which promotes fast instruction

decoding. It supports out-of-order issue and execution,

based on the Register Update Unit (RUU) [8]. The

RUU uses a reorder bu�er for register renaming and

holds the results of pending instructions. The memory

system employs a load/store queue to support specu-

lative execution. The results of a speculative store are

placed in the store queue. If the address of all previ-

ous stores are known, then loads are dispatched to the

memory. The six pipeline stages are issue, dispatch,

fetch, commit, writeback, and load/store queue refresh.

For the SimpleScalar simulator, the con�guration

of the processor core, memory hierarchy and branch

predictor can be speci�ed by using command-line ar-

guments. The clock speed of typical superscalar pro-

cessors is as high as 1 GHz. Power dissipation is a few

tens of Watts, and the transistor count may vary from

a few tens to a hundreds of millions.

2.3. UBC's H.263 Video Encoder

The H.263 Version 2 (H.263+) video encoder [1] con-

tains 23,000 lines (720 kbytes) of C code. It was writ-

ten for desktop PC applications and increases memory

usage for faster execution. It incorporates the base-

line H.263 encoder with many optional H.263+ modes.

Our goal was to optimize the baseline H.263 encoder

only for embedded applications, where the amount of

available memory is much lower. This encoder irregu-

larly uses oating point variables and arithmetic. So,

we choose the oating-point TMS320C6701 instead of

the �xed-point TMS320C6201 as the VLIW DSP rep-

resentative. In the performance evaluation, we encode

sub-QCIF (128�96) frames. A related paper optimizes

the MPEG-2 decoder on the TMS320C6000 [9].

3. VLIW DSP IMPLEMENTATION

The most demanding operations in a typical video

encoder are motion estimation, motion compensation,

discrete cosine transform, half-pixel interpolation, and

reconstruction, as shown in Table 1. We hand opti-

mize these routines to speed up the encoder. The entire

H.263+ encoder, which needs 340 kB of program mem-

ory and 2.2 MB of data memory, does not �t in internal

RAM on the C6701. We used memory placement and

code optimizations to reduce cycle count.

3.1. Memory Placement

Placing the code and data in slow external RAM wastes

many cycles, especially for frequently accessed data

and code. We therefore performed manual placement

of code and data into fast on-chip program and data

memory respectively. Computationally intensive rou-

tines for motion estimation, interpolation, DCT, SAD,

and reconstruction routines were placed in the on-chip

program memory. Commonly used runtime functions

from TI's libraries such asmemcpy, memcmp andmem-

set were linked into internal program memory. A total

of 43 kB out of the 340 kB of needed program memory

was placed in the internal program memory.

Of the 2.2 MB of data memory, the lookup ta-

ble for quantization consumed 1.6 MB. The following

were placed in internal data memory: (1) 16� 16 mac-

roblocks and their corresponding search area for the



Time -o2 -o2 and Memory -o2 and Code All

(%) Routine Optimization Optimization Optimization Optimizations

91.9% Motion Estimation 1356000 33400 325000 13000

1.8% Motion Compensation 26200 4200 6400 3400

1.6% DCT (2-D DCT) 17200 670 6000 130

0.52% Quantization 7700 660 3300 660

1.1% Interpolation 16900 4200 2200 750

2.1% Reconstruction 31000 4000 9100 2260

3.5% Rest 52000 8300 31200 6270

100.0% Entire encoder 1476000 51400 374000 24200

Table 1: Cycle counts (x1000) of H.263 routines (per frame) on the TMS320C6700 VLIW DSP.

Program Usage -o2 and Memory -o2 and Code All

Optimization Optimization Optimizations

SAD Motion Estimation 54 x 4 x 264 x

Clip MB Reconstruction 7.5 x 13 x 228 x

DCT DCT of Frames 26 x 3 x 138 x

Interpolate Bilinear Interpolation 4 x 8 x 22 x

FillMBData Reconstruction 7 x 8 x 22 x

Encoder | 29 x 4 x 61 x

Table 2: Speedup of hand optimized H.263 routines on the TMS320C6700 VLIW DSP per call.

Program 1-way 4-way 8-way 16-way 32-way 256-way VLIW

SAD 12723 7281 6775 6017 6031 6422 290

DCT 56409 22770 16381 14069 13193 12885 384

Clip MB 24545 9604 7023 6250 6438 6438 1173

FillMBData 12692 4693 3082 3425 3438 3438 8740

Interpolate 2011397 640799 425703 456605 456480 456480 750000

Encoder 196 M 68 M 59 M 30 M 30 M 28 M 24 M

Table 3: SimpleScalar (with increasing issue widths) and hand optimized VLIW DSP cycle counts for H.263

routines.



motion estimation routines; (2) 16 � 16 macroblocks

for the DCT, quantization, coding and reconstruction

routines; (3) local data of computationally intensive

routines; and (4) the stack. These choices give an over-

all speedup of 29x over the unoptimized version alone.

3.2. Hand coding assembly language routines

Compiler intrinsics give little performance improvement

for critical routines. To reduce cycle counts further, we

write parallel assembly routines for SAD and Clip MB

and linear assembly routines for InterpolateImage and

FillMBData. We use TI's DCT assembly routines.

SAD consists of two read, one subtract, one abso-

lute value, and one accumulate operation per pixel of

both blocks. We wrote a parallelized pipelined assem-

bly kernel to compute the SAD between two 16 � 16

macroblocks that avoided memory bank conicts. Of

the 16 instructions in the fully unrolled inner loop, 11

instructions use �ve of the six arithmetic units and �ve

instructions use all six arithmetic units. The SAD is

computed in 290 cycles per macroblock in the worst

case. Since the SAD routine aborts computation if the

accumulated di�erence exceeds the current minimum

for the search window, the hand-optimized SAD rou-

tine takes on average 110 cycles per macroblock for

full-search motion estimation. The speedup over the

level two C compiler optimization is 264 times.

The Clip MB routine clips overowing values to 255

and underowing values to zero for every pixel in a

macroblock. We unroll the loops and pipeline the com-

parisons. The cycle counts reduce to 1173 per mac-

roblock, which is an improvement of 228 times over the

compiler's best optimization.

The TI DCT routine runs 138 times faster than

the C version with level two optimization only. How-

ever, the encoder uses 32-bit integers for coe�cients,

whereas TI's DCT routine uses 16-bit short integers.

The conversion is an additional overhead.

We write FillMBData and Interpolate routines in

linear assembly. Both these routines use packed data

access to external memory. The speedup is about 22

times each over the corresponding C compiled version

with level two optimization.

Table 1 summarizes improving cycle counts and Ta-

ble 2 summarizes speedups of the optimized routines.

Overall speedup for the encoder is 61 times over the

version with C compiler optimizations enabled. The

encoder requires 24 M cycles per frame, or equiva-

lently, 4 sub-QCIF (128� 96) frames/s on a 100-MHz

C6701 EVM board. Additional improvement may be

obtained by optimizing the variable length encoding.

Our hand optimized VLIW routines can also be used

in the MPEG standards.

4. SUPERSCALAR IMPLEMENTATION

For a fair comparison while comparing the individual

H.263 routines, code and data were placed in the in-

ternal RAM for both the VLIW and the superscalar

processor. We vary issue widths of the superscalar pro-

cessor from 1-way to 256-way. The other parameters,

i.e. the fetch and decode widths and the load/store

queue and RUU sizes, were chosen to minimize the

cycle counts. Typically, the fetch queue and the de-

code queue were twice the issue bandwidth and the

load/store queue and the RUU size were four times the

issue bandwidth. The 4 kbyte G-share branch predic-

tor [10] was used, which gives good performance over

a variety of applications. For memory latencies, the

default values were chosen, which are equal to typical

values in modern general-purpose processors.

For the SAD, DCT and Clip MB routines on a 256-

way issue superscalar processor, the best cycle counts

were 6017, 12885 and 6250, respectively, which exceeds

the cycle counts for corresponding VLIW DSP parallel

assembly routines, as shown in Table 4. In Table 4,

the superscalar cycle counts for FillMBData and Inter-

polate routines are lower than the cycle counts for the

corresponding VLIW DSP linear assembly routines.

For the entire encoder, the cycle count was 28 M cy-

cles, or equivalently, 3.5 sub-QCIF (128� 96) frames/s

on a 100 MHz processor. The cycle counts for the sub-

routines and the entire encoder for a 1-, 4-, 8-, 16-,

32-, and 256-issue processor are summarized in Table

3. With increasing issue widths, the speedup shows

diminishing returns. Increased issue widths may some-

times lead to more missed speculations. This results in

an increased the cycle counts, as observed in Table 3.

VLIW Simple

DSP Scalar

Routine cycles cycles Ratio

SAD 290 6017 1:20.7

DCT 384 12885 1:33.5

Clip MB 1173 6250 1:5.3

FillMBData 8740 3082 2.8:1

Interpolate 750000 425703 1.8:1

Encoder 24 M 28 M 1.2:1

Table 4: Comparison of 256-way issue superscalar and

hand optimized VLIW DSP implementations.



Measure -o2 -o2 and Memory -o2 and Code All Superscalar

Optimizations Optimizations Optimizations Optimizations Performance

Cycles per frame 1476 M 51 M 374 M 24 M 28 M

Frames per second 0.14 2 0.54 4 3.5

Speedup | 29 4 61 53

Table 5: Comparison of a VLIW DSP and 256-way issue Superscalar implementations at a clock speed of 100 MHz.

5. CONCLUSION

This paper evaluates performance of a baseline H.263

encoder in C on a VLIW DSP TMS320C6700 processor

and on an out-of-order SimpleScalar superscalar pro-

cessor to encode 128� 96 frames. The H.263 encoder

was originally written for PC applications and trades

memory o� for speed. We validate that the VLIW

DSP and superscalar implementations generated iden-

tical H.263 bitstreams to the PC version of the encoder.

When using level two C compiler optimization only,

we �nd that for the same processor clock speeds

1. one-way issue superscalar implementation is 7.5x

faster than the VLIW DSP implementation,

2. four-way to one-way issue speedup is 2.88:1, and

3. 256-way to four-way issue speedup is 2.4:1.

In analyzing the performance of the VLIW DSP

implementation, external memory access was the key

bottleneck. The amount of on-chip memory was only a

fraction of the total memory needed by the application.

A less signi�cant but still important problem was that

the compiler cannot always �nd the full parallelism in C

code to take advantage of the parallel functional units

in a VLIW processor. Once we placed the data and

code that were most often used into on-chip memory,

we hand coded SAD, image interpolation, and image

reconstruction routines on the C6700.

After all of the manual optimizations, the VLIW

DSP implementation was 14% faster than the 256-way

superscalar implementation with level two compiler op-

timization and with all data and code on-chip. This

reects a key di�erence in the architectures. On an

out-of-order superscalar processor, the parallelism is

detected and exploited at run time. On a VLIW DSP,

the parallelism must be detected and exploited at com-

pile time. Optimizing a VLIW DSP implementation

requires careful manual placement of data and code

into on-chip memory, which is not required on a su-

perscalar processor. Optimizing both superscalar and

VLIW DSP implementations generally requires hand

coding the most frequently called routines.

6. REFERENCES

[1] G. Cote, B. Erol, M. Gallant, and F. Kossentini,

\H.263+: Video coding at low bit rates," IEEE Trans.

on Circuits and Systems for Video Technology, vol. 8,

pp. 849{866, Nov. 1998.

[2] T. Gardos, \H.263+: The new ITU-T recommenda-

tion for video coding at low bit rates," in Proc. IEEE

Int. Conf. on Acoustics, Speech and Signal Processing,

vol. 6, pp. 3793{3796, May 1998.

[3] ITU Telecom Standardization Sector, \Video coding

for low bit rate communication," ITU-T Recommen-

dation H.263 Version 2, Jan. 1998.

[4] B. Erol, F. Kossentini, and H. Alnuweiri, \Implementa-

tion of a fast H.263+ encoder/decoder," in Proc. IEEE

Asilomar Conf. on Signals, Systems and Comp., vol. 1,

pp. 462{466, Nov. 1998.

[5] TMS320C6000 Programmer's Guide. No. SPRU 198D,

Texas Instruments, Inc., Mar. 2000.

[6] TMS320C6000 CPU and Instruction Set. No. SPRU

189E, Texas Instruments, Inc., Jan. 2000.

[7] T. Austin and D. Burger, \The SimpleScalar tool set,

Version 2.0," in Tech. Rep., Univ. of Wisconsin Comp.

Sciences Dept., no. TR-1342, June 1997.

[8] G. S. Sohi, \Instruction issue logic for high-

performance, interruptible, multiple functional unit,

pipelined computers," IEEE Trans. on Computers,

vol. 39, pp. 349{359, Mar. 1990.

[9] S. Sriram and C.-Y. Hung, \MPEG-2 video decoding

on the TMS320C6x DSP architecture," in Proc. IEEE

Asilomar Conf. on Signals, Systems and Comp., vol. 2,

pp. 1735{1739, Nov. 1998.

[10] S. Onder, X. Jun, and R. Gupta, \Caching and pre-

dicting branch sequences for improved fetch e�ective-

ness," in Proc. Int. Conf. on Parallel Architectures and

Compilation Tech., vol. 1, pp. 294{302, Nov. 1999.


