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Abstract -- Interferometric synthetic aperture radar
(INSAR) has been used to map terrain topography;
however, accuracy is limited because observations are not
measurements of true surface topography over vegetated
areas.  Instead, the measurements, which depend on the
sensor and the vegetation, represent some height above the
true surface.  We solve an inverse problem for INSAR
scattering to determine surface and vegetation elevations,
and then incorporate sparse laser altimeter observations to
improve the estimates of surface and vegetation elevations.

1. INTRODUCTION

There is a critical need to measure land surface
topography over large areas to assess the threat and impact
of natural hazards such as flooding.  Imaging radars have
been used extensively to map terrain because they can
operate in the microwave portion of the electromagnetic
spectrum, thereby enabling them to image during the day
or night and under most weather conditions.
Interferometric and stereo synthetic aperture radar (SAR)
data can be used to determine topography over large areas,
but interferometric SAR (INSAR) data provide the best
option for making primary topographic measurements in
low-relief areas.

Although topographic mapping with INSAR has been
demonstrated, success has been generally limited to areas
where the surface is not obscured by significant vegetation
[1].  For many applications, topographic features of interest
occur in heavily vegetated regions, such as forests.  INSAR
observations do not provide direct measurements of the
true surface topography in vegetated areas, but instead
yield a height zS  that depends on the sensor characteristics,
the surface elevation

 
zg , and the vegetation height zv .

Vertical height accuracies of 2–5 m can be obtained in
non-vegetated regions with airborne INSAR data processed
to 10 m × 10 m terrain patches (pixels), but the presence of
vegetation can lead to errors in the computed surface
topography of tens of meters in forested areas.  A method
is needed to distinguish surface elevations zg  and
vegetation heights zv  from zS .  One approach is to develop
a functional relationship relating the INSAR observations

to zg  and zv  using an electromagnetic scattering model [2].
Estimating the parameters zg  and zv  from the observations
is then equivalent to inverting the model.  Unfortunately,
baseline constraints and the sensitivity of the INSAR to
various terrain parameters often lead to unacceptably large
variances of the estimates.  Combining INSAR with laser
altimetry (LIDAR) can improve the accuracy of the
INSAR-derived estimates.  In this paper, a method for
integrating LIDAR observations with INSAR-derived
estimates of surface and vegetation elevations is presented.
The LIDAR information can be propagated into the
INSAR estimates beyond the location of the LIDAR
observation.

2. INSAR ESTIMATION

Over barren surfaces, the phase difference used to
determine zS  has a relatively small variance dictated by
measurement noise.  Over vegetated terrain, the INSAR
signal can scatter from both the ground surface and
vegetation constituents, e.g. tree trunks and branches.
Therefore, the value of zS  cannot be related to the physical
topography or vegetation heights from the phase data
alone.  Analytical scattering models can be used to relate
zS  to certain target parameters.  If the scattering model
does not have a closed-form inverse, it can be effectively
inverted by formulating an estimation problem.  INSAR
observations from two baselines are used to recover a
minimal set of terrain parameters: surface elevation zg ,
vegetation height ∆zv , and extinction coefficient τ .

In this study, we implement the scattering model
developed in [2], and invert it using nonlinear constrained
optimization methods [3].  The model is of the form
A x b( ) = , where b  is a 4 × 1 vector of dual-baseline

observations,   A  is the nonlinear scattering model, and x  is
a 3 × 1 vector of the terrain parameters.  The function
min ( )   f x  is minimized subject to inequality constraints

  g( )x  that bound the feasible region for the values of x  (1).
Here,   f ( )x  is the sum of squared errors between the
observations and the model (2).

min    ,  subject to  f gx x( ) ( ) ≤ 0 (1)
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INSAR and LIDAR data were acquired over a test site
on the Texas coast.  C-band (λ = 5.7 cm) INSAR data were
acquired by the NASA/JPL Airborne SAR (AIRSAR)
sensor.  The Optech, Inc. Airborne Laser Terrain Mapping
(ALTM) system acquired laser altimetry data at λ  = 1047
nm.  LIDAR and single-baseline INSAR data were
processed for the test site and analyzed in [3].  However,
the dual-baseline INSAR data from the test site have not
yet been processed.  Therefore, simulated data are used
here to investigate the incorporation of LIDAR
observations into the INSAR estimation procedure.

It was found that inverting the model in [2] provided
good estimates of the vegetation height ∆ẑv  in virtually all
cases.  Estimates of ground elevation ẑg  were much more
dependent on the height of the vegetation.  Using LIDAR
data, we were able to improve the ẑg  estimates.

3. LIDAR DATA

LIDAR sensors typically scan through a small angle
about the nadir direction.  Footprint patterns are generally
dense swaths, many of which are required for wide-area
coverage.  LIDAR sensors can resolve vegetation and
topography better than INSAR in both the horizontal and
vertical dimensions.  This is due to the small footprint of
the laser and minimal penetration of the canopy at the
optical wavelengths used in LIDAR.  Typical vertical
accuracy for single-pass airborne INSAR is 2-5 m over
level, non-vegetated terrain, with 10 km imaging swaths.
LIDAR systems can yield 10 cm vertical accuracy, but
imaging swaths are generally less than 0.5 km, thereby
requiring extensive gridding and removal of interflightline
effects for development of a DEM.  For extensive areas, a
DEM based totally on LIDAR is impractical.  However,
LIDAR has potential as a complementary measurement to
INSAR.

The LIDAR data used in this study were gridded into a
regular-spaced lattice with 10 m postings to match the
resolution of the INSAR data.  This posting is much larger
than the original LIDAR pulse spacing, so the standard
deviation of the LIDAR heights that contributed to each
gridded pixel σ L  was computed.  In vegetated areas,
LIDAR is primarily sensitive to the absolute height of the
vegetation, but surface heights can be measured where
there is minimal vegetation cover.  When dense wide-area
coverage data are available, it is possible to discern barren
from vegetated areas in the zL  imagery.  In the nominal
case of sparse coverage, it is still possible to discern barren
from vegetated areas using σ L  imagery.

Analysis of LIDAR data over the test site indicated
that a simple threshold-based classification using σ L  data
identifies nearly barren and vegetated areas.  Barren and
grass-covered areas were considered as minimally
vegetated, where z zL g≈ .  Where there is minimal
vegetation, adjacent LIDAR pulses scatter off the ground
surface, yielding a low standard deviation of heights for
that pixel.  Over significant vegetation, some LIDAR
pulses scatter from the highest parts of the canopy, while
other pulses penetrate into the top layer, so the standard
deviation of the data is higher.  Standard deviations
between 0.1 m and 5.0 m were observed over the test site.
An empirically determined threshold value of 0.4 m
provided the best separation between tall vegetation, such
as trees and shrubs, and minimally-vegetated areas,
although values between 0.2 m and 0.7 m were also
adequate.

4. COMBINING DATA TYPES

Values given in [2] for measurement noise of dual-
baseline INSAR observations over non-vegetated areas
were applied to the simulated INSAR observations.  An
additive, zero-mean, white Gaussian process was used to
model height errors not attributable to vegetation [4].
Although uniform distributions are often used to model
phase noise, Gaussian distributions are appropriate for
height errors due to phase-difference noise [5], [6].

Although dense LIDAR coverage was available over
the test site, a more conservative LIDAR acquisition was
assumed for the simulation.  A single LIDAR swath
approximately in the azimuth direction of the INSAR
imaging swath could provide σ L  measurements for each
range line in the SAR image.  The availability of σ L  at
each LIDAR pixel is consistent with a single imaging
swath and a pulse density achieved with the ALTM.

2-D arrays of ground elevations and vegetation heights
were specified and used to generate noisy dual-baseline
INSAR observations using the scattering model in [2].
Various deterministic trends plus random variations were
investigated to simulate realistic terrain and vegetation.
LIDAR information was used where ∆zv  ≤ 0.8 m in the
simulation, corresponding approximately to σ L  < 0.4 in the
actual data.  Only two LIDAR samples were allowed per
SAR range line to represent limited LIDAR coverage.  At
these samples, the estimate for the ground elevation was
replaced by the LIDAR height.

Using the LIDAR at specific samples improved the
estimates at those samples.  It also tended to improve the
subsequent estimates because the previous estimate is used
as the initial guess for the current estimate.  The LIDAR
was then more systematically propagated in areas of
minimal vegetation by making the estimates of pixels



adjacent to the LIDAR sample linear combinations of the
current estimate and the adjacent LIDAR measurement.
LIDAR data over minimally vegetated areas exhibited
correlation lengths ≥ 3 pixels (30 m), with less correlation
over vegetated areas.  As a compromise, the support of the
weighting function was extended over one pixel to either
side of the LIDAR sample.  The weights assigned to the
current estimate and adjacent LIDAR-supplied value, were
0.6 and 0.4 respectively.  The weights were chosen to have
a low-pass structure for smoothing.

5. RESULTS

Table 1 shows the mean absolute errors and maximum
absolute errors between the estimates and true values for
ground elevations and vegetation heights.  Including
LIDAR observations reduced both the average and
maximum errors.  Propagating the LIDAR reduced the
error further.  Most of the improvement is in the ground
elevations, as expected.  Figure 1 shows true ground
elevations versus estimated ground elevations in the
propagated LIDAR case.  These results were obtained with
∆zv  ranging from 0.2 m to >6 m and incidence angles near
35° to 40°.

Table 1. Estimate errors: mean absolute error (MAE) and
maximum absolute error (MxE).

MAE zg (m) ∆zv (m)

No LIDAR 0.49 0.05
LIDAR 0.47 0.05
Propagated LIDAR 0.38 0.04

MxE zg (m) ∆zv (m)

No LIDAR 2.55 0.66
LIDAR 2.07 0.57
Propagated LIDAR 1.50 0.42

Figure 1. Scatter plot of zg  for propagated LIDAR

6. CONCLUSIONS

A method for incorporating LIDAR data to improve
INSAR-derived estimates of terrain parameters was
developed, and initial results show promise.  LIDAR was
first used only at a sparse set of locations where the
vegetation cover was minimal.  This significantly improved
ẑg  at the corresponding samples.  The LIDAR information
was then propagated to adjacent pixels, improving results
further.

Although current results are only preliminary, .a
structure is in place to further study the problem.  Several
terrain scenarios were considered in the simulations, but
much more will be learned when the dual-baseline INSAR
data are processed and the algorithms are applied to real
data.  The INSAR-derived estimate errors will probably
increase when applied to actual data, but the impact of the
LIDAR may be greater.
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