Combining Interferometric Radar and Laser Altimeter Data to I mprove Estimates of Topography
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Data from Test Site

| ntroduction

e Research Objective

— Estimate ground surface topography and vegetation heights from interferometric synthetic aperture radar (INSAR)
and laser altimeter (LIDAR) data

e Difficulties
— INSAR can image large areas, but computed elevations lie between ground surface and vegetation canopy
— LIDAR provides vegetation canopy heights, but coverage areais limited
— Combining INSAR and LIDAR data is problematic because sensors have different resolutions and do not directly
measure same physical quantities
 Proposed Solution

— Invert INSAR scattering model to estimate ground el evations and vegetation heights [1]

— Process LIDAR data to obtain ground elevations and vegetation heights [2]

— Combine transformed INSAR and LIDAR datain a multiresolution framework to obtain improved estimates
of ground elevations and vegetation heights [3]

The INSAR M easur ement

 Terrain topography can be determined over large areas using INSAR

— Two complex-valued SAR images acquired simultaneously (single-pass INSAR)
— Cross-correlation between two SAR images yields phase gused to determine terrain heights zg

 VVegetation introduces error into height measurements
— Scattering from both ground and vegetation leads to ambiguity (75 < zs< z)
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INSAR Scattering M ode

» Relate INSAR measurement to ground and vegetation heights [1]

— Electromagnetic scattering model M used to relate observations b to terrain parameters x

— Observation vector b is 4-element vector containing magnitude and phase for two INSAR images
Az Az, = vegetation height above ground

b=M(x) X=|2z Zg = ground elevation

T T = vegetation extinction coefficient
e Transform inverse problem into constrained nonlinear optimization problem
— Estimates are pixel-based
— Inequality constraints bound feasible region X
min M (x) -blli subjectto xXEXC R’ and {93| 0<6;< 71/2}
 Objective function and constraints are twice differentiable and convex on feasible region
e Solve as sequential quadratic programming problem to estimate x [4]

e Representative acquisition scenario
— Dense INSAR coverage with 20 m x 20 m pixels

— Sparse LIDAR coverage with 10 m x 10 m pixels
— LIDAR data acquired at finest scale (scale = 6), INSAR at next coarser scale (scale = 5)

Polarimetric SAR image of test site
(red = Cwv, blue= Lw, green = Lhv)
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TheLIDAR M easurement

* Relate LIDAR measurement to ground and vegetation heights [ 2]
— LIDAR measures z, directly

— Processing required to obtain Zy

>> Compute height statistics in 50 x 50 moving window
>> Threshold height standard deviations to isolate non-vegetated pixels
>> Linearly interpolate between non-vegetated pixels

— Obtain Az, from 2,2y
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e Run times
— Nonlinear optimization: 40 min for 64 x 64 image, 104 estimate tol erance (MaTLAB, single-processor Sun Ultrasparc)
— LIDAR vegetation removal: < 1 min for 64 x 64 image, 10 m postings (C, 4-processor SGI Origin 2000) [2]
— Multiscale Kalman smoothing: < 2 min for 26_scale guad-tree (MaTLAB, single-processor Sun Ultrasparc)

e Mean squared errors for both ground elevations and vegetation heights are reduced

I nputs to multiscale Kalman smoother
INSAR derived ground elevations (m)
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Mean squared errors before multiscale estimation
Bare surface estimation

MSE: C={0or 1} 1.97 m?
MSE: C={1} 2.38 m?
MSE: C = {0} 1.83 m?
V egetation height estimation
MSE: C={0or 1} 4.76 m?
MSE: C = {1} 5.35 m?
MSE: C = {0} 4.57 m?

Output: Kalman smoothed estimates and associated uncertainties
Ground elevation estimates (m)

Estimate error uncertainty (m)

Mean squared errors after multiscale estimation

Bare surface estimation
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h : o4 MSE: C = {1} 0.018 m?
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V egetation height estimation
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Data Fusion Framework

e Kalman smoothing on a quad-tree

— Begins with fine-to-coarse sweep up the tree (Kalman filtering with merge step) [ 3]
— Followed by coarse-to-fine sweep down the tree (Ka man smoothing)

— Accommodates sparse and irregularly spaced measurements

— Allows heterogeneous stochastic data models

— Is non-iterative with constant computational complexity per node
>> For N nodes at finest scale, have 4N/3 nodes on the tree — O(N) operations
— Computes minimum mean squared error estimates of state variables [5]

— Allows explicit separation of state variables and observations

Coar se Resolution
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Linear Dynamic Model
X(9)=A(9)x(sY)+B(s)w(s) state equation
y(S)=C(9)x(9)+V(S) measurement equation

m =scde

s  =nodeindex on multiresolution tree

sy = backshift from s (coarse to fine)

X(s) = statevariable

w(s) = white noise process ~N(0,1)

y(S) = sensor measurement

v(s) = measurement noise process ~N(0,R(s))
A(s) = coarse-to-fine state transition

B(s) = stochastic detail model

C(s) = measurement model/selection matrix
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Fine Resolution

M odel | dentification

e Select stochastic moddl structure

— Many natural processes, such as topography, exhibit self-similar statistics across resolution scales
— 1/f-like stochastic models capture this characteristic
>> Variance of stochastic detail B(s) decreases with increasing resolution
e Determine model coefficients
— Unforced state variable is correlated through scale — A(s)=1
— By and u selected to match power spectra of data model and observations, B(s)=By21-Hm2, 1>1

Conclusions

e Combining physical modeling with multiscal e estimation improves parameter estimates

— Multiscale approach is natural for fusing multiple sources of data with different resolutions

— Target and scale dependent measurement variances alow proper integration of multiple data types

— Optimal (mean squared sense) estimates of state variables are obtained, conditioned on physical modeling and obser-
vations

e Key contributions:

— Combining physical modeling with multiscal e estimation to accommodate nonlinear measurement-state relationships
— Improving estimates of ground el evations and vegetation heights for remote sensing applications

Future Work

e Estimate model coefficients directly in lieu of matching power spectra
e Uselinear signal modeling to determine heterogeneous A(S)

» Develop vector-valued stochastic model
— Exploit interdependencies between estimated parameters
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