
}Vegetation height estimation
B0=3.0
µ=2.0

}Bare surface estimation
B0=0.9
µ=1.5

Bare surface estimation

Vegetation height estimation

MSE: C = {0 or 1}  0.056 m2

MSE: C = {1} 0.018 m2

MSE: C = {0} 0.069 m2

MSE: C = {0 or 1} 1.41 m2

MSE: C = {1} 0.993 m2

MSE: C = {0} 1.56 m2

Mean squared errors after multiscale estimation

Bare surface estimation

Vegetation height estimation

Mean squared errors before multiscale estimation

MSE: C = {0 or 1} 1.97 m2

MSE: C = {1} 2.38 m2

MSE: C = {0} 1.83 m2

MSE: C = {0 or 1} 4.76 m2

MSE: C = {1} 5.35 m2

MSE: C = {0} 4.57 m2

Error measures:

 Field measurements confirm LIDAR data approximate ground truth

 Before multiscale estimation:

Error = (inverted INSAR data - processed LIDAR data)

 After multiscale estimation:

Error = (Kalman smoothed estimates - processed LIDAR data)

Output: Kalman smoothed estimates and associated uncertainties

Vegetation height estimates (m)

Ground elevation estimates (m)

Inputs to multiscale Kalman smoother

n1 (20 m)

n 2 
(2

0 
m

)

n1 (20 m)

n 2 
(2

0 
m

)
 Run times

 Nonlinear optimization: 40 min for 64 x 64 image, 10-4 estimate tolerance (MATLAB, single-processor Sun Ultrasparc)

 LIDAR vegetation removal: < 1 min for 64 x 64 image, 10 m postings (C, 4-processor SGI Origin 2000) [2]

 Multiscale Kalman smoothing: < 2 min for 26-scale quad-tree (MATLAB, single-processor Sun Ultrasparc)

 Mean squared errors for both ground elevations and vegetation heights are reduced

Results

support: 2
m+1

 x 2
m+1

 pixels

LIDAR image

support: 2
m

 x 2
m

 pixels

INSAR image

pixel contains data (C = 1)

pixel does not contain data (C = 0)

LIDAR flight lines

 Representative acquisition scenario
 Dense INSAR coverage with 20 m x 20 m pixels

 Sparse LIDAR coverage with 10 m x 10 m pixels

 LIDAR data acquired at finest scale (scale = 6), INSAR at next coarser scale (scale = 5)

Polarimetric SAR image of test site
(red = Cvv, blue = Lvv, green = Lhv)

7 km

Data from Test Site

 Combining physical modeling with multiscale estimation improves parameter estimates
 Multiscale approach is natural for fusing multiple sources of data with different resolutions

 Target and scale dependent measurement variances allow proper integration of multiple data types

 Optimal (mean squared sense) estimates of state variables are obtained, conditioned on physical modeling and obser-

vations

 Key contributions:
 Combining physical modeling with multiscale estimation to accommodate nonlinear measurement-state relationships

 Improving estimates of ground elevations and vegetation heights for remote sensing applications

 Estimate model coefficients directly in lieu of matching power spectra

 Use linear signal modeling to determine heterogeneous A(s)

 Develop vector-valued stochastic model
 Exploit interdependencies between estimated parameters

Conclusions
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 Kalman smoothing on a quad-tree
 Begins with fine-to-coarse sweep up the tree (Kalman filtering with merge step) [3]

 Followed by coarse-to-fine sweep down the tree (Kalman smoothing)

 Accommodates sparse and irregularly spaced measurements

 Allows heterogeneous stochastic data models

 Is non-iterative with constant computational complexity per node
>> For N nodes at finest scale, have 4N/3 nodes on the tree  O(N) operations

 Computes minimum mean squared error estimates of state variables [5]

 Allows explicit separation of state variables and observations

m = scale
s = node index on multiresolution tree
sγ = backshift from s (coarse to fine)
x(s) = state variable
w(s) = white noise process ~N(0,1)
y(s) = sensor measurement
v(s) = measurement noise process ~N(0,R(s))
A(s) = coarse-to-fine state transition
B(s) = stochastic detail model
C(s) = measurement model/selection matrix

Linear Dynamic Model

x(s)=A(s)x(sγ)+B(s)w(s) state equation

y(s)=C(s)x(s)+v(s) measurement equation

 Select stochastic model structure
 Many natural processes, such as topography, exhibit self-similar statistics across resolution scales

 1/f-like stochastic models capture this characteristic

>> Variance of stochastic detail B(s) decreases with increasing resolution

 Determine model coefficients
 Unforced state variable is correlated through scale  A(s)=1

 B0 and µ selected to match power spectra of data model and observations, B(s)=B02(1-µ)m/2, µ>1

2m

m=0

m=1

m=2

m=3

Coarse Resolution

Fine Resolution

Upward sweep:
Kalman Filtering

Downward sweep:
Kalman Smoothing

Data Fusion Framework

Model Identification

 Research Objective
  Estimate ground surface topography and vegetation heights from interferometric synthetic aperture radar (INSAR)

and laser altimeter (LIDAR) data

 Difficulties
  INSAR can image large areas, but computed elevations lie between ground surface and vegetation canopy

  LIDAR provides vegetation canopy heights, but coverage area is limited

  Combining INSAR and LIDAR data is problematic because sensors have different resolutions and do not directly

measure same physical quantities

 Proposed Solution
  Invert INSAR scattering model to estimate ground elevations and vegetation heights [1]

  Process LIDAR data to obtain ground elevations and vegetation heights [2]

  Combine transformed INSAR and LIDAR data in a multiresolution framework to obtain improved estimates

of ground elevations and vegetation heights [3]

Introduction

 Terrain topography can be determined over large areas using INSAR
 Two complex-valued SAR images acquired simultaneously (single-pass INSAR)

 Cross-correlation between two SAR images yields phase φ used to determine terrain heights zS

 Vegetation introduces error into height measurements
 Scattering from both ground and vegetation leads to ambiguity (zg  zS  zv)

Single-pass
INSAR system

θS
ρS1

ρS2

zS

yS

hS

(ρS2 - ρS1)

B

α

1

2

ρS1, ρS2 >> B

hS = altitude of antenna 1
B = baseline distance
α = baseline angle
θS = incidence angle
ρS1 = path length from antenna 1
ρS2 = path length from antenna 2
yS, zS = target coordinates
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zv
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 Relate INSAR measurement to ground and vegetation heights [1]
 Electromagnetic scattering model M used to relate observations b to terrain parameters x

 Observation vector b is 4-element vector containing magnitude and phase for two INSAR images

 Transform inverse problem into constrained nonlinear optimization problem
 Estimates are pixel-based

 Inequality constraints bound feasible region X

 Objective function and constraints are twice differentiable and convex on feasible region

 Solve as sequential quadratic programming problem to estimate x [4]

∆zv = vegetation height above ground

zg = ground elevation

τ = vegetation extinction coefficient

x =
∆z

v

z
g

τ

 

 

 
 
 

 

 

 
 
 

b = M (x )

min       M (x) -b 2

2
subject to   x X 3

R θS  0 < θS < π 2{ }and

The INSAR Measurement

INSAR Scattering Model

 Relate LIDAR measurement to ground and vegetation heights [2]
 LIDAR measures zv directly

 Processing required to obtain zg

>> Compute height statistics in 50 x 50 moving window

>> Threshold height standard deviations to isolate non-vegetated pixels

>> Linearly interpolate between non-vegetated pixels

 Obtain ∆zv from zv-zg

zg

zv

zL = zg

LIDAR

zL = zv

zL

The LIDAR Measurement

zv = z L    ∀ (n1, n2 ) N

zg =
zL  ,    ∀ (n1,n2 ) N  σL threshold

linearly interpolate,  otherwise

 
 
 

 
 N = set of all pixels in image

σL = standard deviation of within-pixel heights
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