Combining Interferometric Radar and Laser Altimeter Data to Improve Estimates of Topography

K. Clint Slatton, Melba M. Crawford, and Brian L. Evans

The University of Texas at Austin E-mail: slatton@csr.utexas.edu, Ph: +1.512.471.5509, Fax: +1.512.471.3570

Introduction

• Research Objective

- Estimate ground surface topography and vegetation heights from interferometric synthetic aperture radar (INSAR) and laser altimeter (LIDAR) data

• Difficulties

- INSAR can image large areas, but computed elevations lie between ground surface and vegetation canopy
- LIDAR provides vegetation canopy heights, but coverage area is limited
- Combining INSAR and LIDAR data is problematic because sensors have different resolutions and do not directly measure same physical quantities

• Proposed Solution

- Invert INSAR scattering model to estimate ground elevations and vegetation heights [1]
- Process LIDAR data to obtain ground elevations and vegetation heights [2]
- Combine transformed INSAR and LIDAR data in a multiresolution framework to obtain improved estimates of ground elevations and vegetation heights [3]

The INSAR Measurement

- Terrain topography can be determined over large areas using INSAR
 - Two complex-valued SAR images acquired simultaneously (single-pass INSAR)
 - Cross-correlation between two SAR images yields phase ϕ used to determine terrain heights z_S
- Vegetation introduces error into height measurements
 - Scattering from both ground and vegetation leads to ambiguity $(z_a \le z_s \le z_v)$

$$\phi = \frac{2\pi}{\lambda} (\rho_{s_2} - \rho_{s_1}) \approx \frac{-2\pi}{\lambda} B \sin(\theta_s - \alpha) \qquad z_s = h_s - \rho_{s_1} \cos \theta_s$$

Data from Test Site

• Representative acquisition scenario

- Dense INSAR coverage with 20 m x 20 m pixels
- Sparse LIDAR coverage with 10 m x 10 m pixels
- LIDAR data acquired at finest scale (scale = 6), INSAR at next coarser scale (scale = 5)

Results

- Relate LIDAR measurement to ground and vegetation heights [2]
 - LIDAR measures z_v directly
 - Processing required to obtain z_{α}
 - >> Compute height statistics in 50 x 50 moving window
 - >> Threshold height standard deviations to isolate non-vegetated pixels
 - >> Linearly interpolate between non-vegetated pixels
 - Obtain Δz_v from z_v - z_o

N =set of all pixels in image σ_{I} = standard deviation of within-pixel heights

 $z_L = z_v$ z_L , $\forall (n_1, n_2) \in \mathbb{N} \mid \sigma_{\Gamma} \leq \text{threshold}$

LIDAR

• Run times

- Nonlinear optimization: 40 min for 64 x 64 image, 10⁻⁴ estimate tolerance (MATLAB, single-processor Sun Ultrasparc)
- LIDAR vegetation removal: < 1 min for 64 x 64 image, 10 m postings (C, 4-processor SGI Origin 2000) [2]
- Multiscale Kalman smoothing: $< 2 \text{ min for } 2^6$ -scale quad-tree (MATLAB, single-processor Sun Ultrasparc)
- Mean squared errors for both ground elevations and vegetation heights are reduced

Output: Kalman smoothed estimates and associated uncertainties

Bare surface estimation	
MSE: $C = \{0 \text{ or } 1\}$	0.056 m^2
MSE: $C = \{1\}$	0.018 m^2
MSE: $C = \{0\}$	0.069 m^2
Vegetation height estimation	
$\mathbf{MCE} = \mathbf{C} = \{0 = 1\}$	1 11 ?

MSE: $C = \{0 \text{ or } 1\}$	1.41 m^2
MSE: $C = \{1\}$	0.993 m^2
MSE: $C = \{0\}$	1.56 m^2

Error measures:

- Field measurements confirm LIDAR data approximate ground truth - Before multiscale estimation: *Error* = (*inverted INSAR data - processed LIDAR data*)
- After multiscale estimation: *Error* = (*Kalman smoothed estimates - processed LIDAR data*)

Data Fusion Framework

 $z_v = z_L \quad \forall (n_1, n_2) \in \mathbb{N}$

linearly interpolate, otherwise

- Kalman smoothing on a quad-tree
 - Begins with fine-to-coarse sweep up the tree (Kalman filtering with merge step) [3]
 - Followed by coarse-to-fine sweep down the tree (Kalman smoothing)
 - Accommodates sparse and irregularly spaced measurements
 - Allows heterogeneous stochastic data models
 - Is non-iterative with constant computational complexity per node
 - >> For N nodes at finest scale, have 4N/3 nodes on the tree $\rightarrow O(N)$ operations
 - Computes minimum mean squared error estimates of state variables [5]
 - Allows explicit separation of state variables and observations

Linear Dynamic Model

 $x(s) = A(s)x(s\gamma) + B(s)w(s)$ state equation

y(s) = C(s)x(s) + v(s)measurement equation

m = scale= node index on multiresolution tree = backshift from *s* (coarse to fine) x(s) = state variablew(s) = white noise process ~N(0,1)v(s) = sensor measurementv(s) = measurement noise process ~N(0,R(s))A(s) =coarse-to-fine state transition B(s) = stochastic detail model C(s) = measurement model/selection matrix

Fine Resolution

Model Identification

• Select stochastic model structure

- Many natural processes, such as topography, exhibit self-similar statistics across resolution scales
- -1/f-like stochastic models capture this characteristic
 - >> Variance of stochastic detail B(s) decreases with increasing resolution
- Determine model coefficients
 - Unforced state variable is correlated through scale $\rightarrow A(s)=1$
 - $-B_0$ and μ selected to match power spectra of data model and observations, $B(s)=B_02^{(1-\mu)m/2}$, $\mu>1$

Conclusions

- Combining physical modeling with multiscale estimation improves parameter estimates
 - Multiscale approach is natural for fusing multiple sources of data with different resolutions
 - Target and scale dependent measurement variances allow proper integration of multiple data types
 - Optimal (mean squared sense) estimates of state variables are obtained, conditioned on physical modeling and observations
- Key contributions:
- Combining physical modeling with multiscale estimation to accommodate nonlinear measurement-state relationships – Improving estimates of ground elevations and vegetation heights for remote sensing applications

Future Work

- Estimate model coefficients directly in lieu of matching power spectra
- Use linear signal modeling to determine heterogeneous A(s)
- Develop vector-valued stochastic model
 - Exploit interdependencies between estimated parameters

References

- [1] R. N. Treuhaft and P. R. Siqueira, "Vertical structure of vegetated land surfaces from interferometric and polarimetric radar," Radio Science, vol. 35, no. 1, pp. 141-177, 1999.
- [2] A. Neuenschwander, M. Crawford, C. Weed, and R. Guiterrez, "Extraction of Digital Elevation Models for Airborne Laser Terrain Mapping Data," Proc. IEEE Int. Geosci. Remote Sensing Symp., Honolulu, HI, (to appear).
- [3] P. Fieguth, W. Karl, A. Willsky, and C. Wunsch, "Multiresolution Optimal Interpolation and Statistical Analysis of TOPEX/POSEIDON Satellite Altimetry," IEEE Trans. in Geosci. and Remote Sensing, vol. 33, no. 2, March 1995.
- [4] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, Wiley, 2nd ed., New York, NY, 1993.
- [5] R. Brown and P. Hwang, Introduction to Random Signals and Applied Kalman Filtering, 3rd ed., Wiley, New York, NY, 1997.

Acknowledgments

This work was supported by the National Aeronautics and Space Administration, under the Topography and Surface Change Program (Grant NAG5-2954) and the Graduate Student Research Fellowship Program (Grant NGT-50239).