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IntroductionIntroduction
• Problem

– Simultaneously optimize multiple characteristics of an
existing digital IIR lowpass filter design

• Goal
– Develop an extensible automated framework

• Solution
– Solve constrained nonlinear optimization problem by

using sequential quadratic programming (SQP)

– Program Mathematica to derive formulas and generate
Matlab programs to perform optimization
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ModelingModeling
• Free parameters

– Set of n conjugate pole pairs ak exp(± j bk)

– Set of m conjugate zero pairs ci exp(± j di)

• Properties
– Behavioral: magnitude response, phase response
– Implementation: quality factors

• Compute
– Cost function as a weighted mean of distance measures
– Constraints to enforce numerical stability
– Closed-form symbolic gradients for robustness
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Objective MeasuresObjective Measures
• Magnitude response

– Scale to be unity at DC

• Unwrapped phase response
– Constrain zeros to be outside passband

• Quality factor Q
– For each pole pair ak exp(± j bk): 0.5 ≤ Qk ≤ ∞

– Effective quality factor is geometric mean of Qk factors
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Distance MeasuresDistance Measures
• Non-negative differentiable measures

– A value of zero means the ideal case

– Differentiability necessary for SQP formulation

• Deviation in magnitude response
– L2 norm of deviation from ideal in passband, stopband

and transition bands

• Deviation of quality factors
– Minimum effective quality factor Qeff is 0.5

– Deviation measured as σq = Qeff - 0.5
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Distance MeasuresDistance Measures
• Deviation from linear phase in passband

– L2 norm of deviation from perfect linear phase at
optimal slope within (0, ωl) where ωl ≤ ωp

– Approximate optimal slope to obtain analytic form
• Weighted mean of two first-order estimates

• Accurate up to four Taylor series terms

• α = 0.4163; β = 0.5837; r1= 0.5385; r2 = 0.9062
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Overall Cost FunctionOverall Cost Function

• Weighted sum of distance measures
– Passband, transition band, stopband, and phase

response are normalized by bandwidth

– Quality factor

• User-defined weights
– Wp,Wt,Ws, and Wphase for passband, transition band,

stopband, and phase response, respectively

– Wq for quality factor
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ConstraintsConstraints

• Zero locations outside of the passband
– Numerical stability of phase response

• Quality factor of each pole pair less than Qmax

– Qmax determined by technology

• Pole locations inside unit circle

• Magnitude constraints
– Passband

1 - δp < | H(e jω) | < 1 + δp

– Stopband
| H(e jω) | < δs
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ImplementationImplementation
• Mathematica

– Compute cost function, constraints, and gradients
– Generate efficient Matlab code for SQP solution to

optimization problem

• Matlab
– Set all user-definable parameters
– Initial filter design

• User-supplied or default computed elliptic filter
• Preferably overdesigned
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Design ExampleDesign Example
• Optimization of phase response with constraints

on quality factors and magnitude response

• Phase optimized over the entire passband

• Magnitude response constraints
– Passband: (0 - 1) rad, ripple 0.05

– Stopband: (1.8 - π) rad, ripple 0.01

• Initial filter
– Fourth-order elliptic filter generated by Matlab

– Fails quality factor constraints (SQP relaxation)
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Design ExampleDesign Example
• Optimized filter

– Phase response closer to linear (shown on next slide)

– Lower quality factors

– Satisfies magnitude response constraints
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Initial Final

Pole pair 1 0.5176 ± j0.3264 0.2145 ± j0.1651

Pole pair 2 0.4584 ± j0.7602 0.2982 ± j0.7306

Quality factors 0.72, 3.62 0.57, 2.00



Design ExampleDesign Example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

ω

∠
 H

(e
j ω

)

0 0.5 1 1.5 2 2.5 3
−60

−50

−40

−30

−20

−10

0

10

ω

|H
(e

j ω
)|

Magnitude Response Phase Response

Initial filter Optimized filter



ConclusionsConclusions
• Extensible framework for automated digital IIR

filter design optimization

• Symbolic computation eliminates algebraic errors

• Error-free generation of source code

• Robust due to symbolic computation of gradients

• Easy to change objective functions, measures and
constraints

• Software available at
http://www.ece.utexas.edu/~bevans/projects/syn_filter_software.html
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