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Abstract
The ability to measure land surface topography over large
areas to assess natural hazard threats posed by seismic
and flooding events is a critical, international need.
Interferometric synthetic aperture radar (INSAR) has been
used to map topography; however, accuracies are limited
because observations are not measurements of true surface
topography over vegetated areas.  Instead, the
measurements, which depend on the sensor and the
vegetation, represent some height above the true surface.
We develop a two-step correction for the INSAR imagery to
account for penetration into the vegetation.  The INSAR
imagery is first adaptively filtered to reduce random
measurement noise.  We then combine the INSAR with
polarimetric radar and laser altimetry data to account for
the vegetation contribution to the topographic heights.

1. Introduction

There is a critical need to measure and monitor land
surface topography over large areas to assess the threat and
impact of natural hazards such as flooding.  Imaging radars
have been used extensively to map terrain because they can
operate in the microwave portion of the electromagnetic
spectrum, thereby enabling them to image during the day
or night and under most weather conditions.

Both interferometric and stereo synthetic aperture
radar (SAR) data can be used to determine topography over
large areas, but interferometric SAR (INSAR) data
provides the best option for making primary topographic
measurements in low-relief areas due to its better vertical
resolution.  Although the capability of INSAR for mapping
topography has been demonstrated, success has been
primarily limited to areas where the surface is not obscured
by significant vegetation [1].  For many applications,
topographic features of interest occur in heavily vegetated
regions, e.g. forests.  Unfortunately, INSAR observations
do not provide direct measurements of the true surface
topography in vegetated areas, but instead yield a height zS

that depends on the sensor characteristics, the surface
elevation

 
zg , and the vegetation height zv .

Vertical height accuracies of 2–5 m can be obtained in
non-vegetated regions with airborne INSAR data processed
to 10 m × 10 m terrain patches (pixels), but the presence of
vegetation can lead to errors in the computed surface
topography of tens of meters in forested areas.  A method
is needed to distinguish surface elevations zg  and
vegetation heights zv  from zS .  One approach is to develop
a functional relationship to relate the INSAR observations
to zg  and zv  using an electromagnetic scattering model [2].
Estimating the parameters zg  and zv  from the observations
is then equivalent to inverting the model.  An alternative
approach is to combine INSAR with polarimetric SAR
(POLSAR) and laser altimetry (LIDAR) data to derive
corrections for zS  to approximate zv , which we explore in
this paper.  The key contribution of this paper is the
development of a vegetation correction for INSAR imagery
based on POLSAR and LIDAR data.

2. Measurement types

Imaging radar is a side-looking, active sensor, which
means that it transmits and receives its own energy.
Conventional SAR provides images of reflected power by
binning the return echoes according to the time of arrival to
determine the range position of targets.  During synthetic
aperture processing, this range gating affects the pixel
location in the range dimension of the SAR image.  It is not
possible to determine actual distances to the targets with
this type of imaging alone.  Time of arrival and antenna
altitude (determined independently) can be used to
determine distance to the first pixel, but a position
ambiguity remains.  The subsequent pixels in the range
dimension are simply mapped linearly according to the
time of arrival onto what is termed the slant-range line.

It is, however, possible to accurately determine
positions if two SAR images are combined
interferometrically.  An INSAR platform, such as an



aircraft, operating in single-pass mode has two antennas
that image the terrain simultaneously (see Figure 1).
Quadrature demodulation and synthetic aperture processing
of the received signals yield two complex-valued images
C n n1 1 2[ , ] and C n n2 1 2[ , ], where n1  and n2  denote pixel
coordinates.  The interferometric cross correlation
C n n C n n1 1 2 2 1 2[ , ] [ , ]∗  is the primary INSAR measurement.
The cross correlation phase is equal to the relative phase
difference between the two images.  After phase
unwrapping, it is used to solve for the topographic heights
zS  and horizontal distances yS  relative to the radar position
through geometry [1].

Over barren surfaces, the phase difference used to
determine zS  will have a relatively small variance dictated
by measurement noise.  Over vegetated terrain, the INSAR
signal can scatter from both the ground surface and
vegetation constituents, e.g. tree trunks and branches.
Therefore, the value of zS  cannot be related to the physical
topographic or vegetation heights from the phase data
alone.  In this work, LIDAR and POLSAR data are
introduced to infer zv  from zS  imagery.  The NASA/JPL
Airborne SAR (AIRSAR) sensor provided polarimetric and
interferometric data at L-band (λ = 24 cm) and C-band (λ =
5.7 cm).  The Optech, Inc. Airborne Laser Terrain
Mapping (ALTM) system acquired laser altimetry data at λ
= 1047 nm.

LIDAR is typically a down-looking, active sensor that
illuminates the terrain with a dense pattern of laser pulses.
Heights corresponding to each pulse are determined based
on the round trip travel time (see Figure 2).  For this study,
the data was gridded into 10 m × 10 m pixels to correspond
to the SAR images, with several pulses corresponding to
each pixel.  The LIDAR data provides a mean height value
zL  for each pixel.  Figures 3 and 4 contain 90 × 90 pixel
co-registered images of INSAR and LIDAR data over a
vegetated test site near the Texas coast.  The LIDAR
resolves the vegetation and topography better in both the
horizontal and vertical dimensions.  This is due both to the
small footprint of the laser and lack of penetration of the
canopy at the short wavelengths of the optical portion of
the spectrum.  In vegetated areas, LIDAR is primarily
sensitive to the absolute height of the vegetation, but not to
the vegetation structure or height of the surface below the
vegetation.  Surface heights are measured where gaps exist
in the vegetation cover.

Figure 1.  INSAR imaging geometry, where hS  is the
altitude of antenna 1, B is the baseline distance, α  is
the baseline angle, θS  is the incidence angle, ρS1  and
ρS2  are the path lengths from antennas 1 and 2,
respectively, and yS  and zS  are the target
coordinates.  The azimuth direction is out of the
plane, and the range direction is to the right.

Figure 2.  LIDAR imaging geometry, where hL  is the
altitude of sensor, θL  is the incidence angle, ρL  is the
path length from the sensor, and yL  and zL  are the
target coordinates.

Typical vertical accuracy for single-pass airborne
INSAR is 2-5 m over level, non-vegetated terrain, with 10
km imaging swaths.  This random measurement error is
due primarily to thermal noise and spatial decorrelation due
to the non-identical viewing directions of the two antennas.
LIDAR systems can yield 10 cm vertical accuracy, but
imaging swaths are generally less than 0.5 km.  The
INSAR height image in Figure 3 and the corresponding
LIDAR height image in Figure 4 are displayed using the
same linear histogram stretch so that equivalent pixel
values correspond to equivalent heights.



We do not use the full-resolution LIDAR data to
correct the INSAR because complete LIDAR coverage is
not typically available everywhere there is SAR coverage.
Instead, we relate deviations between zS  and zL  to co-
registered POLSAR images.  POLSAR imagery at different
wavelengths and polarizations can be used to indicate the
presence of vegetation [3].

Figure 3.  Image of zS , acquired at C-band

Figure 4.  Image of zL

3. Correcting INSAR for vegetation

Recent attempts to account for vegetation based on
regression and empirical modeling have achieved some
success but were limited to repeat-pass INSAR data [4],
[5].  Interferometric phase, correlation, and the single-

polarization backscatter data used to derive the
interferograms were classified into general land cover
types using INSAR data from the first European Remote
Sensing (ERS-1) satellite [4].  Results were affected by
temporal decorrelation that occurs because of the changes
in the scene between acquisitions.  Because temporal
decorrelation can mimic low correlation due to scattering
from vegetation, it is then more difficult to determine
heights.  This paper is concerned with investigating the
relationships among a variety of complementary data
sources, including POLSAR and LIDAR, over vegetated
terrain.  This richer set of data makes it possible to
"correct" zS  images to obtain approximate zv  images.

The SAR and LIDAR images were co-registered, and
a 90 × 90 pixel subset over the vegetated test site was
examined.  Preliminary processing was required to remove
a vertical offset and 2-D tilt from the INSAR zS  image
relative to the LIDAR.  The LIDAR image was first
downsampled by a factor of ten to represent the typical
case of sparse coverage.  Mosaicked LIDAR data does not
exhibit global tilts because of the sensor's down-looking
acquisition geometry and small imaging swaths.

3.1 INSAR noise reduction

INSAR data over barren terrain can exhibit height
errors of the same order of magnitude as typical vegetation
heights.  It is therefore crucial to minimize this random
sensor noise prior to determining vegetation heights.  The
INSAR measurement errors noted in Section 2 are
aggregated into a single sensor-noise parameter for the zS

image.  An additive, zero-mean, white Gaussian process
can be used to model the height errors that are not
attributable to vegetation [5].  Although uniform
distributions are often used to model phase noise, Gaussian
distributions are appropriate for height errors, which are
linearly proportional to the phase-difference noise [6], [7].
A Minimum Mean Squared Error (MMSE) filter was used
to reduce the noise in the zS  image.

Surface topography measurements are realizations of a
two-dimensional, non-stationary random process, which
can be characterized by the autocorrelation function [8].
When considering vertical relief of a few meters or more,
the minimum separation distance between two nearly
statistically independent points (correlation length) is often
longer than the INSAR pixel spacing [9].

Patches over which the signal is considered locally
wide sense stationary are filtered in the spatial domain
using an adaptive FIR filter [10].  The variance of the noise
was estimated from image pixels over level cut fields.  The
sample variances of the observed signal and of the noise
were then used to compute the filter coefficients for a 3 × 3
window.  The filtered INSAR image is denoted by zSf .



3.2 Vegetation correction

After the random noise was filtered, the POLSAR and
LIDAR data were used to determine zv  from zSf .  Because
LIDAR heights correspond roughly to the tops of the
vegetation, and INSAR penetrates into the vegetation, the
remaining mean squared error (MSE) between the INSAR
and LIDAR is attributed predominantly to the presence of
vegetation.  Pixels affected by vegetation were identified in
the POLSAR imagery.  Corrections to the heights were
then determined using downsampled LIDAR data.

Differences between zSf  and zL  correlated with the L-
band, multi-polarization POLSAR data.  Results were
class-dependent, so classification results obtained
previously from C- and L-band data were employed to
identify vegetated pixels [3].  The affected pixels were
labeled as members of three terrain archetypes based on
vegetation height: barren, medium height, and trees.

INSAR heights over vegetated areas were then
incremented by class-dependent average deviations
between the INSAR and LIDAR to offset penetration
through the vegetation.  The LIDAR pixels in each class
were first filtered with a 3-tap median filter.  This was done
because the higher spatial resolution of the LIDAR caused
trees and the gaps between trees to be included in the tree
class.  The median filter reduced the effect of the gaps on
the height increment for the tree class.   

The INSAR height image, corrected for vegetation zv ,
is shown in Figure 5.  The same histogram stretch was used
in Figures 3–5.  Not every gray level is realized by zv

under this histogram stretch because the range of heights is
determined from both LIDAR and INSAR data.  A transect
corresponding to column 23 of the zv  image is shown in
Figure 6 to illustrate the results more clearly.  The height
offsets are given in Table 1 and the error results are given
in Table 2.  The quantity ∆M S EGlobal refers to percent
reduction in global MSE from unfiltered zS .  The
vegetation correction improved ∆MSEGlobal an additional
6% over MMSE filtering.  The vegetation correction is not
guaranteed to reduce the difference between zSf  and zL  for
a particular pixel or group of pixels.  It did, however,
reduce the MSE for each class and for the entire image
presented in Figures 3–5, as well as other locations in the
test area.

It can be seen from Table 2 that there was more
improvement over barren and tree classes than over the
medium foliage class.  The height offset for barren terrain
is negative and the offset for trees is positive.  The positive
offset for the trees occurs because the penetration of the
longer wavelength INSAR leads to an underestimating of
the height where tall vegetation is present.  The negative
offset over barren areas is most likely due to the LIDAR

and INSAR being acquired at different times of the year.
The LIDAR data was acquired in November, when the
grasslands in the test site had senesced.  The grasslands
were probably slightly denser in the spring of the preceding
year, when the INSAR was acquired.  The denser
vegetation could have caused a small positive bias in the
INSAR heights.

Figure 6 indicates that the correction for the tree class
was too small.  This is because the single class for trees in
the original classification included both tall shrubs and
trees with varying degrees of percent cover.  This was a
consequence of including C-band POLSAR, which can
scatter strongly even from short vegetation, in the
classification and the selection of training sites for the
classifier.  Consequently, some short vegetation was
included in the determination of the height increment for
the tree class.  Reclassifying the POLSAR imagery using
only L-band and training the classifier more specifically on
trees should improve results.

Figure 5.  Image of zv



Figure 6.  Transects from column 23 of the test
images.  The corrected INSAR heights zv  generally
approximate zL  better than the uncorrected
INSAR zS  for all vegetation heights.

Table 1.  Height offsets added to zSf

Barren -0.23 m
Medium  0.03 m
Trees  0.20 m

Table 2.  MSE results relative to zL  after noise
reduction zSf  and after noise reduction plus vegetation
correction zv .  ∆MSEGlobal is percent reduction in global
MSE from unfiltered zS .

zSf zv

MSEBarren 0.52 MSEBarren 0.48
MSEMeduim 0.25 MSEMeduim 0.25
MSETrees 0.40 MSETrees 0.35
MSEGlobal 0.36 MSEGlobal 0.33
∆MSEGlobal 13% ∆MSEGlobal 19%

4. Conclusions

A two-step algorithm was developed to correct INSAR
height images for the presence of vegetation where:
1. measurement noise is reduced through adaptive filtering,
2. class-dependent increments are added to the INSAR

heights.
The vegetation classes are identified using POLSAR data,
and the increments are determined using LIDAR data.

Initial results from the vegetation correction show
promise.  A 6% reduction in the global mean squared error
relative to MMSE filtering alone was achieved for the
location in Figures 3–5.  A larger improvement was
achieved for another location, but many other test images
will be analyzed to investigate the robustness of the

vegetation corrections in different environments.  The
POLSAR imagery will be reclassified using only L-band
data and retrained on the trees to improve corrections for
the tree class.  Similar approaches will be examined that
use POLSAR data directly rather than classified images.
The corrections will likely degrade, but the need for
classifying the POLSAR data will be eliminated.
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