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Abstract

We present a robust non-iterative algorithm to design optimal minimum phase digital FIR

�lters with real or complex coe�cients. We derive (1) the discrete Hilbert transform (DHT) of

the complex cepstrum of a causal complex minimum phase sequence, and (2) the minimum fast

Fourier transform length for computing the DHT to achieve a desired coe�cient accuracy.

I. Introduction

The coe�cients of a linear phase digital FIR �lter are symmetric or anti-symmetric about

the midpoint [1]. Therefore, a nonlinear phase digital FIR �lter of the same length would have

twice as many free parameters. A linear phase FIR �lter has zeros inside, on, and outside the

unit circle, whereas a minimum phase FIR �lter has all of its zeros on or within the unit circle.

Given optimal minimum phase and linear phase digital FIR �lters that meet the same magnitude

speci�cation, the minimum phase �lter would have a reduced �lter length of typically one-half to

three-fourths of the linear phase �lter length [2], and minimum group delay where energy would

be concentrated in the low-delay instead of the medium-delay coe�cients [3]. Minimum phase

�lters can simultaneously meet constraints on delay and magnitude response, while generally

requiring fewer computations and less memory than linear phase �lters.

Previous algorithms for designing minimum phase digital FIR �lters have been limited to real

�lters and may be divided into two classes. One class [4], [5], [6], [7], [8] designs an optimal

linear phase FIR �lter for a power spectrum computed by squaring an ideal piecewise constant

magnitude response. The process of factoring the linear phase polynomial transfer function

(a.k.a. polynomial deation) and reconstructing the minimum phase �lter coe�cients (a.k.a.

polynomial ination) may introduce catastrophic numerical errors in the coe�cients.

The other class of design algorithms [9], [10], [11] uses the complex cepstrum of the minimum

phase �lter, and is less error prone than methods based on polynomial deation or ination.

Two algorithms [9], [10] deconvolve the complex cepstrum. The algorithm in [9] uses spectral

factorization, whereas the algorithm in [10] requires time-domain recursion. The algorithms in

[11] and this paper are based on the discrete Hilbert transform (DHT) relationship between the

magnitude spectrum of a causal real sequence and its minimum phase delay phase spectrum

[1], [12], [13]. As the fast Fourier transform (FFT) length used to compute the DHT increases

[11], [13], we more accurately approximate the continuous Hilbert transform and improve the
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accuracy of the minimum phase �lter coe�cients.

By extending the DHT approach to the complex case, we present an algorithm to design

optimal, complex, minimum phase digital FIR �lters. For the same constraints, complex digital

FIR �lters sometimes have lower computational complexity than real digital FIR �lters, e.g. in

seismic processing [14]. For piecewise magnitude constraints and a linear phase constraint over

the passband, one algorithm [14] designs optimal, complex, nonlinear phase digital FIR �lters.

By relaxing the phase constraint, we can design an optimal minimum phase complex �lter that

meets the same magnitude constraints but is up to 50% shorter than [14].

Section II extends the DHT relationship to complex sequences. Section III describes the new

design algorithm. Section IV gives two design examples. Section V o�ers conclusions. The

Appendix gives the FFT length to obtain a desired coe�cient accuracy for a given �lter order.

II. A DHT relation for complex sequences

This section derives a DHT relation between the magnitude spectrum of a causal complex

sequence and its minimum group delay phase spectrum. Any sequence can be represented as a

sum of conjugate symmetric and antisymmetric parts

x[n] = xe[n] + xo[n] (1)

where xe[n] =
1
2
(x[n]+x�[�n]) and xo[n] = 1

2
(x[n]�x�[�n]) such that x� represents the complex

conjugate of x. Using Fourier transform properties [1],

X(ej!) = XR(e
j!) + jXI(e

j!) (2)

where XR(e
j!) and jXI(e

j!) are the Fourier transforms of xe[n] and xo[n], respectively. Fur-

thermore, XR(e
j!) and XI(e

j!) are the real and imaginary parts of X(ej!), respectively. If x[n]

is causal, i.e. x[n] = 0 for n < 0, then it is possible to recover x[n] from xe[n] by using

x[n] = 2xe[n]u[n] � x
�[0] �[n] (3)

By taking the Fourier transform of (3), we obtain

X(ej!) =
1

�

Z
�

��

XR

�
e
j�

�
U

�
e
j(!��)

�
d� � x

�[0] (4)

where U(ej!) is the Fourier transform of the unit step sequence [1]. By using

U(ej!) =
1

2
� j

2
cot

�
!

2

�
+

1X
k=�1

� �(! � 2�k) (5)
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we can express (4) as

X(ej!) = XR(e
j!) + jXI(e

j!)

= XR(e
j!) + 1

2�

R
�

��
XR(e

j�)d�

� j

2�

R
�

��
XR(e

j�) cot
�
!��

2

�
d�

�<e fx�[0]g � j=m fx�[0]g

(6)

Equating real and imaginary parts in (6), and noting that

<e fx�[0]g = 1

2�

Z
�

��

XR

�
e
j�

�
d� (7)

we obtain the relationship

XI

�
e
j!

�
= � 1

2�

Z
�

��

XR

�
e
j�

�
cot

�
! � �

2

�
d� �=m fx�[0]g (8)

By using the DHT relation for the complex cepstrum [1] of a complex sequence x̂[n], we obtain

argX
�
e
j!

�
= � 1

2�

Z
�

��

log
���X �

e
j�

���� cot�! � �

2

�
d� �K (9)

where K = =m fx̂�[0]g. The minimum phase spectrum of a complex sequence has the same form

as the minimum phase spectrum of a real sequence plus a constant. If we minimize group delay,

which is the derivative of the phase response with respect to frequency !, then the constant term

K will vanish, and the same DHT relation would hold for complex and real sequences.

III. Optimal Minimum Phase FIR Design Algorithm

The optimal minimum phase �lter is designed by transforming an optimal linear phase FIR

�lter into an optimal minimum phase �lter. The design is decoupled into two steps:

1. Obtain the squared magnitude response of the desired optimal minimum phase FIR �lter.

2. Use the DHT to produce a minimum phase FIR �lter by directly supplying the square root

of the magnitude response of step 1.

Several methods achieve the goal of the �rst step. We modify the two-level ripple speci�cation

in [8] in the following subsections. In order to handle multiple ripple levels over di�erent bands,

we replace step 1 with the method in [9] which uses a modi�ed Parks-McClellan algorithm [15]

to allow the error to oscillate between 0 and 2 �k instead of ��k to +�k, where �k is the ripple

in the kth band [16]. Thus, optimal minimum phase �lters with the least complexity may be

obtained for arbitrary magnitude speci�cations over the passband and stopband using the DHT.
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A. Obtaining the squared magnitude response of optimal magnitude minimum phase FIR �lter

First, we design a symmetric lowpass �lter of length 2N � 1 using the Parks-McClellan algo-

rithm. Given the desired passband and stopband ripples of the optimal minimum phase �lter

as �01 and �02, respectively, we compute the passband and stopband ripples of the linear phase

�lter which are respectively denoted as �1 and �2. The order of the minimum phase �lter that is

�nally obtained is N , and this �lter is not only minimum phase but also has optimal magnitude

characteristics in the Chebyshev sense. The length 2N�1 linear phase �lter is typically designed

with the smallest number of taps that will meet the computed linear phase speci�cations [17]:

�1 =
4 �01

2 + 2 �021 � �022

(10)

�2 =
�022

2 + 2 �021 � �022

(11)

The transfer function of the linear phase �lter designed in this way is

Hlinear(z) = z
�(N�1)

H0(z) (12)

where H0(z) is the zero phase transfer function

H0(z) =
N�1X
k=0

h(k)(zk + z
�k) (13)

Second, we shift the transfer function by �2 + �1. Shifting the transfer function by �2 makes

the magnitude spectrum non-negative. Since the DHT does not exist on the unit circle [18], we

add �1 to ensure that the DHT exists. The �1 term may be chosen to be arbitrarily small so as

not to a�ect the magnitude spectrum signi�cantly. We typically use �1 = 10�10.

Third, we normalize H0(z) + �2 by using H(z) = (H0(z) + �2) SCAL where [8]

SCAL =
4

(
p
1 + �1 + �2 +

p
1� �1 + �2)2

(14)

This causes the passband ripple to oscillate between 1 + �01 and 1� �01. H(z) corresponds to the

magnitude squared response of the minimum phase �lter Hmin(z)

H(z) = (H0(z) + �2) SCAL = Hmin(z)Hmin(z
�1) (15)

Hmin(z) has the required magnitude response of the minimum phase spectral factor.
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B. Application of the Discrete Hilbert Transform

We apply the DHT to Hmin(z), which is the square-root response of H(z), reconstruct the

minimum phase polynomial by combining the desired magnitude and phase responses, and take

the inverse FFT. For any magnitude response, the minimum phase �lter of a given order is

unique. The algorithm is idempotent for a given �1, within the limits of arithmetic precision.

The discrete version of the integral transform in (9) uses a Discrete Fourier Transform (DFT)

[13]. Given a sampled magnitude spectrum j X[i] j for i = 0; : : : ;M � 1, where M is the DFT

length, we compute the corresponding minimum phase spectrum in two steps. First, we compute

the sampled phase spectrum

� = �j DFT f s � IDFTfagg (16)

where � represents pointwise vector multiplication and

� = [ �[0]; �[1]; : : : ; �[M � 1] ]

s = [ sgn[0]; sgn[1]; : : : ; sgn[M � 1] ]

a = [ log jX[0]j; log jX[1]j; : : : ; log jX[M � 1]j ]

such that

sgn[i] =

8>>>><
>>>>:

0 i = 0; M
2

1 0 < i <
M

2

�1 M

2
< j < M

(17)

Second, we form j X[i] j ej �[i] for i = 0; 1; : : : ;M � 1. We can make the discrete approximation

in (16) arbitrarily close to the continuous integral transform in (9) by choosing a large enough

FFT length, as quanti�ed in the Appendix.

The minimum phase �lter with the same magnitude response as x[n] may be constructed by

1. computing j X[i] j for i = 0; : : : ;M � 1 which is the sampled magnitude spectrum of x[n],

2. calculating �[i] for i = 0; : : : ;M � 1 by using (16),

3. constructing the FFT of length M of the minimum phase sequence as j X[i] j ej �[i],
4. taking the inverse FFT transform of length M to obtain a minimum phase sequence, and

5. truncating the resulting sequence to the desired �lter impulse response length N .

The formula for choosing M is given in the Appendix. By using a long FFT,

1. the magnitude spectrum of the truncated minimum phase sequence closely matches the

original magnitude spectrum, and

2. the truncated terms may be made negligibly small (e.g. on the order of 10�7).
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IV. Example Optimal Minimum Phase Filter Designs

We design two optimal minimum phase �lters using the DHT-based algorithm in Section III.

Example 1 is designed according to the speci�cations of an example in [8]. Example 2 presents

the design of a complex-tap optimal minimum phase FIR �lter. In the examples, all frequency

values are normalized in the range from 0 to 1, where 1 represents half of the sampling frequency.

For each example, we report the FFT length used and the time that DHT-based algorithm took

to run in MATLAB [19] version 5.0 on a 167 Hz Sun Ultra workstation running Solaris 2.5.1.

A. Example 1: Real 325-Tap Lowpass Filter

To show that the algorithm can handle very long �lters, we design a real lowpass FIR �lter

using a set of speci�cations from [8]: passband edge fp = 0:28, stopband edge fs = 0:3, weighting

function 1 : 5 � 105, passband ripple �01 = 0:000830, and stopband ripple �02 = 8:2008 � 10�5.

Using (10) and (11), we calculate �1 = :001660 and �2 = 3:3627 � 10�9 for the optimal linear

phase �lter. The optimal linear phase �lter has a length of L = 649, and optimal minimum phase

FIR �lter has a length of N = 325. Fig. 1a shows the magnitude response and group delay of

the optimal minimum phase �lter. Fig. 1b shows the plot of the impulse response coe�cients.

We used an FFT length of 524; 288 (219), and the algorithm took 60 s to run.

In the DHT-based optimal design, the actual ripple parameter values were �01 = 0:000828 and

�02 = 8:1684 � 10�5, which meet the speci�cations. The relative percentage error was 0:24% in

the passband and 0:39% in the stopband, which are comparable with the �gures of 0:29% and

0:21%, respectively, in [8]. While the ripples in both bands of the DHT-based design are lower

than the speci�ed value, the ripples in the design in [8] are greater than the speci�ed values.

B. Example 2: Complex 26-Tap Lowpass Filter

We design a lowpass complex-tap minimum-phase �lter. The optimal linear phase �lter is an

equiripple �lter having linear phase over the passband only. Hence it has complex coe�cients

and may be designed using the algorithm in [14]. The speci�cations are fp = 0:7, fs = 0:8,

�01 = 0:002125, �02 = 0:092510, and a weighting function of 1:1. Using (10) and (11), we calculate

�1 = 0:004268 and �2 = 0:004297. The optimal complex-tap �lter with linear phase over the

passband has 50 taps. Using the DHT-based algorithm, we design a minimum phase complex

FIR �lter with 26 taps to meet the speci�cations. Fig. 2 shows the magnitude response and

group delay of the optimal complex �lter, and Table I lists its coe�cients. We used an FFT
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length of 32; 678, and the algorithm took 6 s to run.

In the DHT-based optimal design, the actual ripple parameter values were �01 = 0:002125 and

�02 = 0:092359, which meet the speci�cations. The relative errors are 0% in the passband and

0:16% in the stopband. The approach also gives good results for higher-order complex FIR �lters.

V. Conclusion

We present a robust non-iterative algorithm to design optimal minimum phase digital FIR

�lters with real or complex coe�cients given an arbitrary magnitude speci�cation. We derive

the DHT of the complex cepstrum of a causal complex minimum phase sequence, which is the

DHT of the real cepstrum plus a constant. The Appendix derives the minimum fast Fourier

transform length for computing the DHT to achieve a desired coe�cient accuracy for a given

�lter order.
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Appendix

We relate the FFT length for the DHT-based design algorithm to the �lter order and the �lter

coe�cient accuracy �. We express the normalized transfer function of the minimum phase �lter

Hmin(z) in (15) as a product of two shorter transfer functions H1(z) and H2(z):

H1(z) =
N1Y
k1=1

(1� zk1z
�1)

H2(z) =
N2Y
k2=1

(1� e
j�k2z

�1)

(18)

Here, zk1 is the k1st zero such that jzk1 j < 1 for k1 = 1; 2; : : : ; N1. H1(z) corresponds to the

passband and transition band zeros, and H2(z) corresponds to the stopband zeros on the unit

circle. The logarithm of Hmin(z) can be expressed as

log(Hmin(z)) = log(H1(z)) + log(H2(z)) (19)
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The terms may be expanded using Taylor series for log(1 + z) about z = 0:

log(H1(z)) = �
N1X
k1=1

 
1X

m=1

zm
k1

m
z
�m

!
(20)

log(H2(z)) = �
N2X
k2=1

 
1X

m=1

e
jm�k2

m
z
�m

!
(21)

Since both in�nite summations converge, the terms in the in�nite summations decay faster than
1

m
. In addition, the in�nite summation terms in log(H1(z)) decay faster than those in log(H2(z))

since the zeros of H1(z) are inside the unit circle and the zeros of H2(z) are on the unit circle.

The complex cepstrum is h1(n) + h2(n). Each component may be obtained by taking the

inverse z-transform of log(H1(z)) and log(H2(z)), respectively:

h1(n) = �
N1X
k1=1

Z�1

(
1X

m=1

zm
k1

m
z
�m

)
(22)

h2(n) = �
N2X
k2=1

Z�1

(
1X

m=1

e
jm�k2

m
z
�m

)
(23)

Since h2(n) decays at a much slower rate, we consider h2(n). When n > 0,

h2(n) = �
N2X
k2=1

e
jn�k2

n
(24)

For the complex �lter case, jh2(n)j < N2

n
. For causality, jh2(n)j < � for n > M2

2
where M2 is the

length of the sequence or the order of the FFT used:

����h2
�
M2

2

����� < � = 2
N2

M2
(25)

For real �lters, we obtain a better bound because we know that the stopband zeros occur in

complex conjugate pairs and are spaced uniformly around the unit circle

jh2(n)j = � 2

n

lX
i=0

cos(2�fi) (26)

where l =
N2

2
� 1 when N2 is even and l =

N2 � 1

2
when N2 is odd.

Using the fact that �i = 2�fi and f0 = fs, where fs is the stopband frequency, the stopband

frequency response speci�cation (26) becomes

jh2(n)j = � 2

n

"
lX

i=0

c(fs; i; N2)

#
(27)
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where

c(fs; i; N2) = cos

�
2�

�
fs + i

�
1� 2fs
N2 � 1

���
(28)

Therefore, the error bound for the real case is

����h2
�
M2

2

����� < � =
4

M2

�����
lX

i=1

c(fs; i; N2)

����� (29)

We can make � arbitrarily small by using a large enough FFT length. If the FFT length is

restricted to be a power of two, then we may compute the required FFT length M2 from the

speci�ed cepstral error � for the complex and real cases as

mcomplex = d1 + log2(N2)� log2(�)e (30)

mreal = d2 + log2

�����
lX

i=0

c(fs; i; N2)

������ log2(�)e (31)

M2 = 2m2 (32)

where m2 is mcomplex for the complex case and mreal for the real case. For a �lter with 100

stopband zeros, fs = 0:3, and � = :001, we obtain m2 = 18 in both cases. Although (30) is more

conservative than (31), requiring a power-of-two FFT may yield the same FFT length.
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(a) Magnitude response and group delay
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Fig. 1. Magnitude response and group delay for an optimal real 325-tap minimum phase digital FIR �lter

designed by the new algorithm based on the Discrete Hilbert Transform.
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Fig. 2. Magnitude response and group delay for an optimal complex 26-tap minimum phase digital FIR

�lter designed by the new algorithm based on the Discrete Hilbert Transform. The �lter coe�cients

are given by Table I.
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Real part Imaginary part

0:327129781635836 1:10104503387227 � 10�8

0:512001406284635 0:262431899245427

0:163947468371105 0:227163058898302

� 0:0257167097493542 0:169356927781137

0:0355816232408139 0:107986540639453

� 0:093077273032793 0:0915095753055589

� 0:0273636983641238 0:00902835562046581

0:100091962583298 0:0167244203666966

� 0:0190331892220469 0:0145608794832695

� 0:0286050656554984 0:0569396810712755

� 0:000707266912356274 0:0495568548051081

� 0:0104438457279702 0:0208216969515995

0:0411664224502276 0:0293187012314285

� 0:00914800135573782 0:00101446776486144

� 0:032619881411354 0:0107003684593396

0:0183176695129369 0:0188941052638534

0:00391196683007148 0:011337275264548

0:00443371597075111 0:0270242535593892

� 0:00386068199999262 0:00485717178612143

� 0:0162004814698202 0:00834426154063499

0:0154867955225919 0:00016176926155688

0:00680124235641706 0:00318781993786719

� 0:0140452818544805 0:0190124777686621

0:00327648746946536 0:0200572861433658

0:00238954698448227 0:00749923742815284

0:000915786507148754 0:000874039273345126

TABLE I

Coefficients of an optimal complex 26-tap minimum phase digital FIR filter. The

magnitude response and group delay are plotted in Fig. 2.
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